О числе точек на кривой y2=x7+ax4+bx над конечным полем
О числе точек на кривой $y^2 = x^7 + ax^4 + bx$ над конечным полем
Аннотация:
Представлены явные формулы для числа точек на гиперэллиптической кривой рода $3$ вида $y^2 = x^7 + ax^4 + bx$ над конечным полем $\mathbb {F}_q$ характеристики $p > 3$. Как следствие, показано, что задача подсчёта точек на данном классе кривых имеет сложность $O(log^{4} q)$ битовых операций.
Табл. 2, библиогр. 27.
Литература:
- ГОСТ 34.10-2018. Информационная технология. Криптографическая защита информации. Процессы формирования и проверки электронной цифровой подписи. Введ. 01.06.2019. М.: Стандартинформ, 2018. 21 с.
- FIPS 186-4. Digital signature standard (DSS). Gaithersburg, MD: NIST, 2013. Available at https://doi.org/10.6028/NIST.FIPS.186-4 (accessed Mar. 9, 2022).
- Koblitz N. Hyperelliptic cryptosystems // J. Cryptol. 1989. V. 1, No. 3. P. 139–150.
- Handbook of elliptic and hyperelliptic curve cryptography. Boca Raton, FL: Chapman Hall/CRC, 2006. 808 p.
- Schoof R. Counting points on elliptic curves over finite fields // J. Théor. Nombres Bordx. 1995. V. 7, No. 1. P. 219–254.
- Abelard S., Gaudry P., Spaenlehauer P. J. Improved complexity bounds for counting points on hyperelliptic curves // Found. Comput. Math. 2019. V. 19, No. 3. P. 591–621.
- Gaudry P., Schost É. Genus 2 point counting over prime fields // J. Symb. Comput. 2012. V. 47, No. 4. P. 368–400.
- Abelard S. Counting points on hyperelliptic curves in large characteristic: Algorithms and complexity : PhD thes. Nancy: Univ. Lorraine, 2018.
- Dobson S., Galbraith S. D., Smith B. Trustless unknown-order groups // J. Math. Cryptol. [in print].
- Boneh D., Bonneau J., Bünz B., Fisch B. Verifiable delay functions // Advances in cryptology – CRYPTO 2018. Proc. 38th Annu. Int. Cryptol. Conf. (Santa Barbara, CA, USA, Aug. 19–23, 2018). Pt. I. Cham: Springer, 2018. P. 757–788. (Lect. Notes Comput. Sci.; V. 10991).
- Rivest R. L., Shamir A., Wagner D. A. Time-lock puzzles and timed-release Crypto. Tech. rep. MIT-LCS-TR-684. Cambridge, MA: MIT, 1996. 9 p.
- Benaloh J., de Mare M. One-way accumulators: A decentralized alternative to digital signatures // Advances in cryptology – EUROCRYPT’93. Proc. Workshop Theory Appl. Cryptogr. Tech. (Lofthus, Norway, May 23–27, 1993). Heidelberg: Springer, 1994. P. 274–285. (Lect. Notes Comput. Sci.; V. 765).
- Satoh T. Generating genus two hyperelliptic curves over large characteristic finite fields // Advances in cryptology – EUROCRYPT 2009. Proc. 28th Annu. Int. Conf. Theory Appl. Cryptogr. Tech. (Cologne, Germany, Apr. 26–30, 2009). Heidelberg: Springer, 2009. P. 536–553. (Lect. Notes Comput. Sci.; V. 5479).
- Guillevic A., Vergnaud D. Genus 2 hyperelliptic curve families with explicit Jacobian order evaluation and pairing-friendly constructions // Pairing-based cryptography – Pairing 2012. Rev. Sel. Pap. 5th Int. Conf. (Cologne, Germany, May 16–18, 2012). Heidelberg: Springer, 2013. P. 234–253. (Lect. Notes Comput. Sci.; V. 7708).
- Novoselov S. A. Counting points on hyperelliptic curves of type $y^2 = x^{2g+1} + ax^{g+1} + bx$ // Finite Fields Appl. 2020. V. 68, ID 101757. 27 p.
- Mumford D. Abelian varieties. Oxford: Oxford Univ. Press, 1974.
- Tate J. Endomorphisms of Abelian varieties over finite fields // Invent. Math. 1966. V. 2, No. 2. P. 134–144.
- Blanco-Chacón I., Chapman R., Fordham S., McGuire G. Divisibility of $L$-polynomials for a family of curves // Contemporary Developments in Finite Fields and Applications. Singapore: World Sci., 2016. P. 1–10.
- Singh V., McGuire G., Zaytsev A. Classification of characteristic polynomials of simple supersingular Abelian varieties over finite fields // Funct. Approximatio, Comment. Math. 2014. V. 51, No. 2. P. 415–436.
- Chou K. M. J., Kani E. Simple geometrically split Abelian surfaces over finite fields //J. Ramanujan Math. Soc. 2014. V. 29, No. 1. P. 31-62.
- Stichtenoth H. Algebraic function fields and codes. Heidelberg: Springer, 2009. (Grad. Texts Math.; V. 254).
- Cohen H. A course in computational algebraic number theory. Heidelberg: Springer, 1993. (Grad. Texts Math.; V. 138).
- Stein W. SageMath. 2021. Available at https://www.sagemath.org (accessed Mar. 11, 2022).
- Harvey D. Kedlaya’s algorithm in larger characteristic // Int. Math. Res. Not. 2007. V. 2007, No. 22, ID rnm095. 29 p.
- Harvey D. Hypellfrob. 2008. Available at https://web.maths.unsw.edu.au/~davidharvey/code/hypellfrob (accessed Mar. 11, 2022).
- Novoselov S. A., Boltnev Yu. F. Characteristic polynomials of the curve $y^2 = x^7 + ax^4 + bx$ over finite fields // Прикл. дискрет. математика. Прил. 2019. № 12. С. 44–46.
- Novoselov S. A. Counting points on hyperelliptic curves with geometrically split Jacobians [poster] // 14th Algorithmic Number Theory Symp. (Auckland, New Zealand, June 29–July 4, 2020). Auckland: Univ. Auckland, 2020. Available at https://www.math.auckland.ac.nz/~sgal018/ANTS/posters/Novoselov.pdf (accessed Mar. 11, 2022).
Работа первого автора выполнена при финансовой поддержке Минобрнауки РФ (соглашение № 075–02–2022–872).
Новоселов Семён Александрович
- Балтийский федеральный университет им. И. Канта,
ул. Александра Невского, 14, 236041 Калининград, Россия
E-mail: snovoselov@kantiana.ru
Болтнев Юрий Фёдорович
- Балтийский федеральный университет им. И. Канта,
ул. Александра Невского, 14, 236041 Калининград, Россия
E-mail: yuri.boltnev@gmail.com
Статья поступила 31 октября 2021 г.
После доработки — 31 января 2022 г.
Принята к публикации 7 февраля 2022 г.
Abstract:
We provide explicit formulae for the number of points on a genus $3$ hyperelliptic curve of type $y^2 = x^7 + ax^3 + bx$ over a finite field $\mathbb {F}_q$ of characteristic $p > 3$. As an application of these formulae, we prove that point-counting problem on this type of curves has heuristic time complexity of order $O(log^{4} q)$ bit operations.
Tab. 2, bibliogr. 27.
References:
- Information technology. Cryptographic data security. Signature and verification processes of electronic digital signature, GOST 34.10-2018 (Standartinform, Moscow, 2018) [Russian].
- Digital signature standard (DSS), FIPS 186-4 (NIST, Gaithersburg, MD, 2013). Available at https://doi.org/10.6028/NIST.FIPS.186-4 (accessed Mar. 9, 2022).
- N. Koblitz, Hyperelliptic cryptosystems, J. Cryptol. 1 (3), 139–150 (1989).
- Handbook of Elliptic and Hyperelliptic Curve Cryptography (Chapman Hall/ CRC, Boca Raton, FL, 2006).
- R. Schoof, Counting points on elliptic curves over finite fields, J. Théor. Nombres Bordx. 7 (1), 219–254 (1995).
- S. Abelard, P. Gaudry, and P. J. Spaenlehauer, Improved complexity bounds for counting points on hyperelliptic curves, Found. Comput. Math. 19 (3), 591–621 (2019).
- P. Gaudry and É. Schost, Genus 2 point counting over prime fields, J. Symb. Comput. 47 (4), 368–400 (2012).
- S. Abelard, Counting points on hyperelliptic curves in large characteristic: Algorithms and complexity, PhD Thesis (Univ. Lorraine, Nancy, 2018).
- S. Dobson, S. Galbraith, and S. Benjamin, Trustless unknown-order groups, J. Math. Cryptol. [in print].
- D. Boneh, J. Bonneau, B. Bünz, and B. Fisch, Verifiable delay functions, in Advances in Cryptology – CRYPTO 2018 (Proc. 38th Annu. Int. Cryptol. Conf., Santa Barbara, CA, USA, Aug. 19–23, 2018), Pt. I (Springer, Cham, 2018), pp. 757–788 (Lect. Notes Comput. Sci., Vol. 10991).
- R. L. Rivest, A. Shamir, and D. A. Wagner, Time-lock puzzles and timedrelease crypto. Tech. Rep. MIT-LCS-TR-684 (MIT, Cambridge, MA, 1996).
- J. Benaloh and M. de Mare, One-way accumulators: A decentralized alternative to digital signatures, in Advances in Cryptology – EUROCRYPT’93 (Proc. Workshop Theory Appl. Cryptogr. Tech., Lofthus, Norway, May 23–27, 1993) (Springer, Heidelberg, 1994), pp. 274–285 (Lect. Notes Comput. Sci., Vol. 765).
- T. Satoh, Generating genus two hyperelliptic curves over large characteristic finite fields, in Advances in Cryptology – EUROCRYPT 2009 (Proc. 28th Annu. Int. Conf. Theory Appl. Cryptogr. Tech., Cologne, Germany, Apr. 26–30, 2009) (Springer, Heidelberg, 2009), pp. 536–553 (Lect. Notes Comput. Sci., Vol. 5479).
- A. Guillevic and D. Vergnaud, Genus 2 hyperelliptic curve families with explicit Jacobian order evaluation and pairing-friendly constructions, in Pairing-Based Cryptography – Pairing 2012 (Rev. Sel. Pap. 5th Int. Conf., Cologne, Germany, May 16–18, 2012) (Springer, Heidelberg, 2013), pp. 234–253 (Lect. Notes Comput. Sci., Vol. 7708).
- S. A. Novoselov, Counting points on hyperelliptic curves of type $y^2 = x^{2g+1} + ax^{g+1} + bx$, Finite Fields Appl. 68, ID 101757, 27 p. (2020).
- D. Mumford, Abelian Varieties (Oxford Univ. Press, Oxford, 1974).
- J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (2), 134–144 (1966).
- I. B. Chacon, R. Chapman, S. Fordham, and G. McGuire, Divisibility of $L$-polynomials for a family of curves, in Contemporary Developments in Finite Fields and Applications (World Sci., Singapore, 2016), pp. 1–10.
- V. Singh, G. McGuire, and A. Zaytsev, Classification of characteristic polynomials of simple supersingular abelian varieties over finite fields, Funct. Approximatio, Comment. Math. 51 (2), 415–436 (2014).
- K. M. J. Chou and E. Kani, Simple geometrically split abelian surfaces over finite fields, J. Ramanujan Math. Soc. 29 (1), 31–62 (2014).
- H. Stichtenoth, Algebraic Function Fields and Codes (Springer, Heidelberg, 2009) (Grad. Texts Math., Vol. 254).
- H. Cohen, A Course in Computational Algebraic Number Theory (Springer, Heidelberg, 1993) (Grad. Texts Math., Vol. 138).
- W. Stein, SageMath (2021). Available at https://www.sagemath.org (accessed Mar. 11, 2022).
- D. Harvey, Kedlaya’s algorithm in larger characteristic, Int. Math. Res. Not. 2007 (22), ID rnm095, 29 p. (2007).
- D. Harvey, Hypellfrob (2008). Available at https://web.maths.unsw.edu. au/~davidharvey/code/hypellfrob (accessed Mar. 11, 2022).
- S. A. Novoselov and Yu. F. Boltnev, Characteristic polynomials of the curve $y^2 = x^7 + ax^4 + bx$ over finite fields, Prikl. Diskretn. Mat., Prilozh., No. 12, 44–46 (2019).
- S. A. Novoselov, Counting points on hyperelliptic curves with geometrically split Jacobians [poster], in 14th Algorithmic Number Theory Symp., Auckland, New Zealand, June 29–July 4, 2020 (Univ. Auckland, Auckland, 2020). Available at https://www.math.auckland.ac.nz/~sgal018/ANTS/posters/Novoselov.pdf (accessed Mar. 11, 2022).