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Аннотация. Рассматривается задача оптимизации трафика в сети
передачи данных. Для моделирования трафика используется ими-
тационная модель. Пути передачи задаются неявно весами дуг. Если
поток по дуге превышает её пропускную способность, то дуга счита-
ется перегруженной. Задача состоит в минимизации двух целевых
функций: числа перегруженных дуг и расстояния от исходного век-
тора весов при соблюдении ограничений на суммарный поток в се-
ти и появление новых перегруженных дуг. Предложена двухстадий-
ная эволюционная схема, включающая алгоритм локального поиска
по окрестностям большой мощности для получения стартового при-
ближения границы Парето. Лучшее соседнее решение ищется при
помощи оригинальной модели целочисленного линейного програм-
мирования. Проведено сравнение предложенного подхода с лучши-
ми эволюционными алгоритмами на примерах с 628 каналами и 1324
запросами, и показано, что новая схема демонстрирует результаты,
статистически лучшие на 15–49% по многим показателям качества
(9 из 10). Табл. 3, ил. 6, библиогр. 42.

Ключевые слова: оптимизация «чёрного ящика», матэвристика,
поиск с чередующимися окрестностями, OSPF, эволюционный ал-
горитм.

Введение

В связи с постоянно растущим объёмом интернет-трафика важно эф-
фективно управлять сетевыми ресурсами, что может быть достигнуто
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путём грамотной маршрутизации трафика по каналам. Для выбора пу-
тей маршрутизации трафика существуют различные протоколы. Методы
управления трафиком включают в себя настройку весов каналов (напри-
мер, в протоколах Open shortest path first (OSPF) и Intermediate system
to intermediate system (IS-IS) [1]), использование многопротокольной ком-
мутации по меткам (multiprotocol label switching, MPLS) [2], использова-
ние централизованных контроллеров таких, как программно определяе-
мая сеть (software-defined networking, SDN) [3] и сегментная маршрути-
зация [4].

Такие протоколы, как MPLS, позволяют явно задавать пути для за-
просов. Это позволяет производить тонкую настройку сети и добиваться
большой эффективности. Например, в работах [5, 6] обсуждаются раз-
личные точные методы и эвристики для построения маршрутов в сети.
Однако такой подход требует больших вычислительных ресурсов для на-
хождения пути для каждого запроса и из-за этого плохо масштабируется
на большие сети. Также в случае отказа соединения или узла придётся
заново пересчитать маршруты для всех запросов, которые должны были
пройти по этим каналам.

В данной работе рассматриваются протоколы, которые настраивают-
ся путём задания весов сетевых соединений. Часто эти протоколы ис-
пользуют стратегию маршрутизации по кратчайшему пути [1]. Однако
в работе не используются какие-либо предположения о структуре про-
токола. Это связано с тем, что протоколы, используемые на практике,
может быть трудно явно записать математически, но потоки трафика,
создаваемые протоколом, часто могут быть смоделированы с помощью
компьютерной программы. Такие задачи, в которых мы не можем яв-
но оценить целевую функцию и ограничения, называются задачами оп-
тимизации «чёрного ящика» [7–9]. Способ маршрутизации, основанный
на кратчайших путях, может быть не таким гибким, как например MPLS,
так как не позволяет задавать различные маршруты для отдельных па-
кетов. Однако он более прост в настройке и эксплуатации, так как требу-
ет только настройки весов соединений, а также лучше масштабируется
и более устойчив к отказам оборудования.

В протоколе OSPF основной задачей является настройка весов кана-
лов. Это можно сделать, следуя некоторым простым правилам, например
установив веса обратно пропорционально пропускной способности кана-
ла [10]. Однако такое решение может быть не оптимальным, поэтому су-
ществуют также метаэвристические подходы к решению данной задачи.
Например, в статье [11] авторы разработали эвристику локального по-
иска, используя специальную нелинейную функцию стоимости. Следует
заметить, что предложенная целевая функция обрела большую популяр-
ность в литературе и используется во многих источниках, приведённых
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далее. В этой же работе авторы приводят некоторые оценки того, на-
сколько маршрутизация, основанная на весах, может отличаться от оп-
тимальной. В [12] представлен генетический алгоритм для этой задачи
поиска весов. Авторы [13] разработали алгоритм реагирования на изме-
няющиеся условия в сети. Предложенный алгоритм пытается исправить
неудовлетворительное состояние сети, возникшее из-за отказа каналов
или изменения спроса, путём небольших изменений весов. В последние
годы растущий интерес к машинному обучению побудил исследователей
применить эти методы и к решению задач маршрутизации трафика [14].

Компании могут преследовать различные цели при построении и из-
менении сети. В большинстве случаев целью задач маршрутизации тра-
фика является минимизация максимальной нагрузки на канал связи [15],
уменьшение задержек в сети [16], улучшение балансировки нагрузки [17]
или энергоэффективности [18]. Также популярна целевая функция в ви-
де упомянутой ранее специальной нелинейной функции стоимости [11].

Из-за многокритериального характера задач маршрутизации суще-
ствует множество статей, посвящённых оптимизации нескольких целе-
вых функций, а наиболее популярным методом решения таких задач яв-
ляются генетические алгоритмы, так как они естественным образом ис-
пользуют популяцию различных решений. Например, в [19] авторы при-
меняют генетический алгоритм NSGA-II для оптимизации затрат и ба-
лансировки нагрузки. Авторы используют точный метод, чтобы полу-
чить решения для небольших примеров, и сравнивают эффективность
эвристики с решениями на истинной границе Парето. В [20] обсуждается
использование эволюционных алгоритмов SPEA2 и NSGA-II для мини-
мизации перегрузки и задержки в сети. Авторы предлагают схему оп-
тимизации, которая должна помочь сетевым администраторам выбрать
подходящую конфигурацию для удовлетворения требований. В [18] оп-
тимизируются балансировка нагрузки и энергоэффективность. Авторы
предлагают эвристическую схему и сравнивают её с оптимальной про-
изводительностью сети. Сравнение алгоритмов SPEA2 и NSGA-II для
задачи определения весов с возможными сбоями соединения представ-
лено в [21]. Авторы обнаружили, что алгоритм NSGA-II демонстрирует
лучшие общие результаты для больших задач. Более подробный обзор
литературы о задаче маршрутизации трафика можно найти в [22].

Также можно отметить, что существует важная задача, являющая-
ся расширением данной: задача планирования сети, в которой требу-
ется определить, какие соединения будут существовать между узлами
и их пропускную способность. В этой задаче обычно учитывается как
физическая топология сети, на которой находятся проложенные кабе-
ли, так и логическая топология, состоящая из сконфигурированных IP-
каналов [23]. Обычно целью оптимизации является нахождение баланса
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между стоимостью решения и его устойчивостью к отказам оборудова-
ния [24], хотя дополнительно существует большое количество различных
критериев, которым должна удовлетворять сеть [25]. Для решения этой
задачи также существуют различные методы: запись в виде ЦЛП-мо-
дели [26], генетические алгоритмы [27] и подходы с использованием ма-
шинного обучения [28]. Данная задача может представлять интерес для
будущего исследования. Обзор различных направлений и задач можно
найти в [29].

В данной работе рассматривается задача оптимизации, целью кото-
рой является минимизация общего числа перегруженных каналов в се-
ти путём корректировки весов каналов. Канал называется перегружен-
ным, если поток по нему превышает его пропускную способность. Потоки
вычисляются во время моделирования сетевого протокола, который на-
значает пути для запросов на основе взвешенных длин путей. В задаче
также предпочтительно не изменять веса значительно, поскольку это мо-
жет привести к неожиданному поведению при практической реализации.
Стало быть, вторая целевая функция задачи — минимизировать расстоя-
ние до исходного вектора весов. После оптимизации существующей сети
качество обслуживания клиентов должно быть не хуже, чем оно было
до оптимизации. Тем самым если канал не был перегружен до оптимиза-
ции, то в полученном после оптимизации решении он должен оставаться
таковым. Кроме того, суммарная нагрузка на сетевые каналы не должна
увеличиваться. Эти два условия являются строгими ограничениями в за-
даче. Такие целевые функции и ограничения зависят от значений потока
трафика, полученных с помощью имитационной модели.

Основным результатом работы является следующее. Для данной за-
дачи маршрутизации трафика в сети передачи данных предложена двух-
стадийная эволюционная схема. Она включает в себя алгоритм локаль-
ного поиска по окрестностям большой мощности для получения старто-
вого приближения границы Парето. Лучшее соседнее решение ищется
при помощи оригинальной модели целочисленного линейного програм-
мирования. Проведено сравнение предложенного подхода с лучшими эво-
люционными алгоритмами, и показано, что новая схема демонстрирует
результаты, которые статистически лучше на 15–49% по многим показа-
телям качества (9 из 10). Данная статья является расширенным вариан-
том работы, представленной на конференции OPTIMA 2023 [30].

В разд. 1 приведена математическая модель задачи. В разд. 2 пред-
ставлен подход, основанный на модели линейного программирования.
Вычислительные эксперименты обсуждаются в разд. 3. Они включают
в себя описание различных показателей качества в п. 3.1, описание спо-
соба запуска эволюционных алгоритмов в п. 3.2, проверку правильности
выбора соотношения бюджетов в двухэтапной схеме в п. 3.4, сравнение
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приведённых подходов в п. 3.5 и, наконец, оценку дисперсии качества по-
лучаемых решений в п. 3.6. Краткие выводы, приведённые в заключении,
завершают статью.

1. Постановка задачи

В работе используются следующие обозначения:
• A— это множество дуг в графе, соответствующих каналам связи

в сети;
• w

0 =
(
w0
a

)
a∈A

— начальный вектор весов каналов;
• ca — пропускная способность канала a ∈ A.
Оптимизируемые переменные записаны в виде вектора w = (wa)a∈A,

содержащего веса каналов. После задания этих весов можно смоделиро-
вать поведение сети и вычислить следующие её характеристики:
• la(w)— суммарная нагрузка дуги a;

• oa(w) =

®
1, если дуга a ∈ A перегружена,

0 иначе;

• noa(w) =

®
1, если oa(w) = 1 и oa(w0) = 0,

0 иначе.
По величинам потока в сети вычисляются следующие характеристики

решения:
• общее число перегруженных каналов O(w) =

∑
a∈A

oa(w);

• расстояние D(w) = ||w −w
0||ℓ1 между начальным и текущим век-

торами весов дуг;
• суммарная загрузка сети L(w) =

∑
a∈A

la(w);

• число новых перегруженных каналов NO(w) =
∑
a∈A

noa(w).

Используя эти обозначения, задачу можно сформулировать как двух-
критериальную задачу целочисленного программирования с использова-
нием «чёрного ящика»:

O(w)→ min, (1)

D(w)→ min, (2)

L(w) 6 L(w0), (3)

NO(w) = 0, (4)

w ∈W. (5)

Формулы (1)–(5) показывают, что цель состоит в том, чтобы найти
векторы весов каналов, которые минимизируют число перегруженных
каналов и имеют наименьшее расстояние от исходного вектора w

0, при
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условии, что решения должны обеспечивать общую нагрузку на кана-
лы, не превышающую первоначальной, и не должны вызывать новых
перегрузок каналов.

Вектор весов w ∈W называется допустимым, если он удовлетворяет
условиям (3) и (4). Для двух допустимых весовых векторов w

1,w2 ∈ W
говорим, что w

1 доминирует w
2, если O(w1) 6 O(w2), D(w1) 6 D(w2)

и по крайней мере одно из этих неравенств строгое. Задача состоит в том,
чтобы найти Парето-множество решений, т. е. множество всех возмож-
ных решений без доминирования в рамках модели (1)–(5). Набор допу-
стимых решений S ⊆W называется приближением к множеству Паре-

то или аппроксимирующим множеством, если в S нет доминируемых
решений. Далее в разд. 3.1 будут представлены показатели эффектив-
ности, которые характеризуют качество аппроксимирующего множества
с разных точек зрения.

2. Эвристика, основанная на модели ЦЛП

Эвристический подход, который представлен в этом разделе, основан
на модели целочисленного линейного программирования. Установлено,
что классический локальный поиск, изменяющий вес одной дуги за раз,
быстро останавливается в локальном оптимуме. Одновременное измене-
ние нескольких весов помогает решить эту проблему, но размер такой
окрестности экспоненциально увеличивается с ростом количества изме-
няемых весов, и её просмотр становится невозможным в рамках выделен-
ного вычислительного бюджета. Для того чтобы обойти этот недостаток,
предложено предсказывать изменения потока в сети, вызванные измене-
нием нескольких весов, по изменениям, вызванным изменениями веса
одной дуги. Представленная далее математическая модель целочислен-
ного линейного программирования способна предсказать такие измене-
ния и выбрать лучшее решение в окрестности. Она использует значения
изменений потока трафика в зависимости от изменений веса какого-либо
канала и пытается подобрать комбинацию изменений нескольких весов
одновременно так, чтобы минимизировать число перегруженных дуг. Так
как изменения весов влияют друг на друга, решения, предсказанные мо-
делью, могут отличаться по качеству от настоящих, однако эксперимен-
ты показывают, что предложенный подход позволяет находить хорошие
решения.

2.1. Модель минимизации перегрузки. Путём изменения отдель-
ного веса в векторе w можно вычислить, как изменение веса одной дуги
e ∈ E ⊆ A влияет на нагрузку каждой дуги. Далее рассматриваем толь-
ко подмножество всех весов, поскольку моделирование требует больших
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вычислительных затрат, при этом желательно свести к минимуму чис-
ло вызовов имитационной модели. Структура множества E будет пред-
ставлена ниже в разд. 2.2. Пусть h обозначает размер шага, а w

e+ —
весовой вектор, полученный из w путём увеличения его e-й компоненты
по формуле we+

e = min{wmax
e , we + h}. Аналогично e-я компонента век-

тора уменьшенного веса w
e− равна we−

e = max{wmin
e , we−h}. Изменение

нагрузки для каждой дуги a ∈ A может быть вычислено в рамках одного
запуска имитационной модели следующим образом:

le+a = la(w
e+)− la(w), le−a = la(w

e−)− la(w).

Чтобы сформулировать модель ЦЛП для минимизации перегрузки,
введём булевы переменные (xa)a∈A, указывающие, перегружена соответ-
ствующая дуга или нет, и булевы переменные (λ+e ), (λ

−
e ), указывающие,

увеличивается или уменьшается вес соответствующего канала.
С этими обозначениями модель минимизации перегрузки записывает-

ся следующим образом:
∑

a∈A

xa → min, (6)

∑

e∈E

(λ+e + λ−e ) 6 k, (7)

λ+e + λ−e 6 1, e ∈ E, (8)

la(w) +
∑

e∈E

le+a λ+e +
∑

e∈E

le−a λ−e 6 ca + oa(w
0)Mxa, a ∈ A, (9)

∑

a∈A

Å
la(w) +

∑

e∈E

le+a λ+e +
∑

e∈E

le−a λ−e

ã
6 L(w0), (10)

λ+e , λ
−
e , xa ∈ {0, 1}, a ∈ A, e ∈ E. (11)

Целевая функция (6) минимизирует число перегруженных каналов.
Условия (7) ограничивают количество модификаций текущего весового
вектора w. Это необходимо, поскольку изменения компонентов вектора
веса влияют друг на друга, и одновременное изменение нескольких ком-
понентов приводит к непредсказуемым изменениям нагрузки. Поскольку
изменения нагрузки, вызванные увеличением и уменьшением веса соеди-
нения, не противоположны друг другу, в оптимальное решение модели
теоретически могут входить обе модификации одной дуги. Чтобы это
предотвратить, ограничения (8) запрещают такое поведение. Ограниче-
ния (9) указывают, что соединения, которые не были перегружены из-
начально, не должны стать перегруженными после изменения веса. Эти
ограничения, включающие достаточно большую константу M, гаранти-
руют, что переменной xa будет присвоено значение, равное единице, если
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пропускная способность соответствующего канала a будет превышена.
Наконец, неравенство (10) гарантирует, что общая нагрузка после изме-
нения весов не превысит начального значения общей нагрузки L(w0).

2.2. Поиск с чередующимися окрестностями. Здесь описан ал-
горитм, который использует модель, представленную в п. 2.1. Он на-
поминает схему спуска с чередующимися окрестностями с изменяемым
шагом [31]. При такой аналогии окрестность решения w включает реше-
ния, которые могут быть достигнуты путём изменения не более чем k
элементов вектора w на величину h. Лучшее решение из этой окрестно-
сти в предположении, что модификации различных дуг не влияют друг
на друга, можно найти, взяв оптимальное решение для модели (6)–(11).
Различные значения k и h задают различные окрестности. Введём мно-
жества K и H для возможных значений k и h. Пусть множество K
зависит от двух параметров: kmax ∈ N и категориального параметра
RT ∈ {fixed, decremental, exp}, обозначающего тип диапазона:

K(RT) =





{kmax}, если RT = fixed,

{kmax, kmax − 1, . . . , 1}, если RT = decremental,

{kmax, ⌊kmax/2
1⌋, ⌊kmax/2

2⌋, . . . , 1}, если RT = exp.

Пусть множество H зависит от параметров hmin и hmax следующим
образом:

H(hmin, hmax) = {2ihmin | i ∈ 0, 1, . . . , ⌊log2 (hmax/hmin)⌋}.
Для определения размера шага h алгоритм делит все дуги на группы
в зависимости от начальных весов:

Eg =
{
i ∈ A | 10g 6 w0

i < 10g+1
}
, G =

{
Eg | g = 0, . . . ,

⌊
log10max

i∈A
w0
i

⌋}
.

В каждой группе используются границы hmin,g =
⌈
min

{
w0
i | i ∈ Eg

}
/4
⌉

и hmax,g = 64hmin,g для шага h. В экспериментах также рассматрива-
ется вариант без разделения на группы и |G| = 1. В этом случае уста-
навливаются параметры hmin = 1 и hmax = 0,5max

i∈A
w0
i . Схема поиска

с чередующимися окрестностями на основе модели VNMS представлена
алгоритмом 1.

Процедура локального улучшения solveModel(w, h,E, k) заключает-
ся в решении модели (6)–(11) с соответствующими значениями w, h, E
и k. Алгоритм начинает с g = 1, h = hmin,1, k = kmax. Если новое реше-
ние, полученное после решения модели, не лучше старого, то параметры
обновляются следующим образом. Сначала уменьшается значение k. Ес-
ли оно становится меньше kmin, то k сбрасывается до kmax, а значение h
удваивается. Если h оказывается больше, чем hmax, то его значение уста-
навливается равным hmin, и алгоритм переходит к следующей группе.
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Алгоритм 1. Поиск с чередующимися окрестностями на основе модели

1: function VNMS(G,H,K)
2: for g = 1, . . . , |G| do

3: H ← H(hmin,g, hmax,g);
4: for all h ∈ H do

5: i← 0;
6: while i 6 |K| do

7: w
′ ← solveModel(w, h,Eg,p,K[i]);

8: if w
′ недопустимое then greedyFix(w′);

9: if w
′ лучше, чем w then w ← w

′;
10: else i← i+ 1;

11: return w;

После завершения работы с последней группой алгоритм останавлива-
ется. Однако в ходе экспериментов он перезапускался с начала, пока
бюджет вычислений оставался неисчерпанным.

Дополнительно в схеме реализован механизм быстрой починки реше-
ния, который задействуется, если решение на выходе модели ЦЛП недо-
пустимо из-за перегрузки новых дуг. Указанный механизм жадно увели-
чивает веса вновь перегруженных дуг, при этом выполняется не более 200
итераций увеличения; эта процедура названа greedyFix. Также, чтобы
ускорить поиск и внести разнообразие в алгоритм, оценивается только
случайное подмножество соседей Eg,p, в которое каждое изменение по-
падает с вероятностью p ∈ (0, 1].

Хотя такой эвристический подход может применяться сам по себе,
большой интерес представляет гибридизация этой схемы с хорошо из-
вестными многокритериальными эволюционными алгоритмами (multi-
objective evolutionary algorithm, MOEA). Оба метода имеют свои пре-
имущества и недостатки. Эволюционные алгоритмы доказали свою спо-
собность находить решения, которые очень близки к множеству Парето.
Однако им может быть трудно удовлетворить ограничения, в то время
как подход на основе представленной модели, учитывает эти ограниче-
ния явным образом. Эвристический подход позволяет получить допу-
стимые точки, далёкие от начального решения, однако он возвращает
лишь небольшое число решений, причём часть из них могут находиться
значительном расстоянии от истинной границы Парето. Следовательно,
двухэтапная схема, в которой эволюционные алгоритмы используются
для последующей оптимизации аппроксимации множества Парето, най-
денного с помощью подхода, основанного на модели, должна обеспечить
хорошие результаты.
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3. Вычислительные эксперименты

Все эксперименты, описанные в этом разделе, проводились на ком-
пьютере, оснащённом процессором Intel Core i7-8700 3,20ГГц и 32ГБ
оперативной памяти, под управлением операционной системы Microsoft
Windows 10 Pro. Для реализации модели, описанной в разд. 2, применены
библиотека PuLP 1) на языке Python и пакет CBC [32]. CBC был запу-
щен в одном потоке, в то время как все остальные операции выполнялись
параллельно с использованием всех доступных ядер.

Для оценки качества работы алгоритма было сгенерировано 13 те-
стовых примеров из предоставленного нам реального. Исходный пример
содержит |A| = 628 каналов и 1324 запроса (пары источник-назначение).
Сгенерированные примеры имеют ту же структуру графа и матрицу
источник — назначение, что и исходный пример. Отличие заключается
в векторе начальных весов w

0. В работе использованы различные схе-
мы выбора начальных весов: выбор согласно рекомендации Cisco [10],
нормализация весов исходного примера, перемешивание исходных весов
и случайное равномерное распределение весов. В итоге максимальный
вес в примерах варьируется от 10 до 10 000. Подробнее механизм генера-
ции примеров описан в [30].

3.1. Показатели качества. Для численного анализа эффективно-
сти алгоритмов применяются показатели эффективности, разработан-
ные специально для задач многокритериальной оптимизации [33] для
сравнении приближений множеств Парето. Для описания показателей
потребуются обозначения S или Sk, k ∈ N, для приближений границы
Парето, полученных с помощью исследуемых алгоритмов. В некоторых
определениях показателей используется специальное множество реше-
ний R, называемое эталонным множеством, которое является точной
Парето-границей или же заведомо достаточно хорошим приближением
к ней. Вектор целевых функций для удобства можно обозначить через
F = (fi)i∈I . В нашем случае I = {1, 2}, f1 = O и f2 = D. Рассматрива-
ются следующие показатели.

• Гиперобъём (hypervolume) определяется как объём в пространстве
целевых функций, который доминируется приближением к границе Па-
рето и ограничен сверху некоторой точкой. В качестве такой точки ис-
пользуем

(
O(w0), max

w∈R
D(w)

)
.

• Вклад (contribution) — доля точек из эталонного множества R, ко-
торые присутствуют в S.

1) https://github.com/coin-or/pulp
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• Расстояние до эталона (generational distance, GD) — это расстояние
от S до R:

GD(S,R) =
1

|S|
( ∑

w
s∈S

min
w

r∈R
‖F (ws)− F (wr)‖p

) 1
p
.

• Расстояние от эталона (inverted generational distance, IGD) — рас-
стояние от R до S: IGD(S,R) = GD(R,S). Для GD и IGD используем
p = 2.

• ε-Индикатор — это значение, необходимое для того, чтобы S адди-
тивно ε-доминировало R. Говорим, что вектор w

1 аддитивно ε-домини-

рует w
2, если fi(w1) 6 ε+ fi(w

2) для любого i ∈ I.
• Максимальная ошибка (maximum Pareto front error, MPFE) — мак-

симальное расстояние точки из S до R:

MPFE(S,R) = max
w

s∈S
min
w

r∈R
‖F (ws)− F (wr)‖.

• Показатели R1 и R2. Пусть S1 и S2 — две аппроксимации множе-
ства Парето, U — набор функций полезности u : Rm → R. Для каждого
u ∈ U и s = 1, 2 пусть задано u⋆(Ss) = min

w∈Ss

u(F (w)). Эти два показа-

теля измеряют, в какой степени S1 лучше, чем S2, по набору функций
полезности U :

C(S1, S2, u) =





1, если u⋆(S1) < u⋆(S2),

1/2, если u⋆(S1) = u⋆(S2),

0, если u⋆(S1) > u⋆(S2);

R1(S1, S2, U) =
1

|U |
∑

u∈U

C(S1, S2, u);

R2(S1, S2, U) =
1

|U |
∑

u∈U

(u⋆(S1)− u⋆(S2)).

Если R1(S1, S2, U) > 0.5, то считается, что S1 лучше, чем S2. Аналогич-
но R2(S1, S2, U) < 0 соответствует тому, что S1 показывает результаты
лучше, чем S2.

• Расстояние между решениями (spacing) рассчитывается как

SP(S) =

Ã
1

|S| − 1

|S|∑

i=1

(d̄− di)2,

где di = min
w

j∈S\wi
‖F (wi) − F (wj)‖ℓ1 — расстояние между точкой w

i ∈
S и ближайшей точкой аппроксимации множества Парето, полученной
с помощью того же алгоритма, а d̄— среднее значение di.
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Рис. 1. Качество полученной границы Парето: без начального решения w
1

• Минимальное число перегруженных дуг равно Omin(S) = min
w∈S

O(w).

• Число решений (cardinality) равно |S|.

3.2. Многокритериальные популяционные алгоритмы. В ли-
тературе одними из самых популярных для многокритериальной опти-
мизации являются алгоритмы, основанные на популяции решений [34],
поэтому в этой работе также рассмотрены несколько наиболее широко
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Рис. 2. Качество полученной границы Парето:
среднее Omin(w

1), среднее D(w1)
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используемых многокритериальных эволюционных алгоритмов. А имен-
но, применяются следующие многокритериальные алгоритмы из Java-
библиотеки MOEA framework [35]:
• NSGA-II — nondominated sorting genetic algorithm II [36];
• SPEA2 — strength Pareto evolutionary algorithm 2 [37];
• PESA-II — Pareto envelope region-based selection algorithm [38];
• PAES — Pareto archived evolutionary strategy [39].
Также протестированы другие эволюционные алгоритмы, но они по-

казали результаты хуже, чем перечисленные выше.
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PESA-II
Вторая начальная точка

Рис. 3. Качество полученной границы Парето:
хорошее Omin(w

1), среднее D(w1)

Стоит отметить, что алгоритмы, основанные на популяции, работают
намного лучше, если им предоставляются несколько начальных решений
{w0,w1, . . . ,wm}, а не только w

0. На рис. 1–5 представлено поведение
алгоритмов при двух начальных решениях {w0,w1} для различных зна-
чений w

1, при этом по горизонтальной оси отложено число перегружен-
ных каналов, а по вертикальной — расстояние до границы Парето. Все
результаты соответствуют исходному примеру.

Как видно из рис. 1–5, качество результатов, достигаемых с помощью
алгоритмов, сильно зависит от исходных решений. Желательно, чтобы
в начальной популяции было по возможности близкое к w

0 решение, ко-
торое имеет как можно меньшее значение O(w). Последнее необходимо
для того, чтобы иметь возможность находить промежуточные потенци-
альные решения.
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Рис. 4. Качество полученной границы Парето:
хорошее Omin(w

1), хорошее D(w1)

Из-за присутствия ограничений в задаче эволюционным алгоритмам
трудно исследовать пространство решений и находить хорошие отдалён-
ные. Для повышения качества итоговых решения можно инициализиро-
вать популяцию с помощью решений, полученных при помощи метода,
учитывающего эти ограничения, подобного тому, который представлен
в разд. 2.
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Рис. 5. Качество полученной границы Парето:
хорошее Omin(w

1), плохое D(w1)
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В предыдущей работе [30] было показано, что алгоритм PAES наилуч-
шим образом среди эволюционных алгоритмов подходит для нахождения
решений с малым числом перегруженных дуг. Там же было показано, что
гибридизация других популяционных алгоритмов с PAES улучшает ка-
чество найденных решений, а среди таких вариантов выигрывает схема,
в которой на 50 000 оцениваний целевой функции запускается PAES, по-
сле чего запускается алгоритм PESA-II с бюджетом 70 000 оцениваний
целевой функции.

3.3. Выбор параметров. Чтобы определить хорошие значения па-
раметров схемы VNMS, было решено использовать инструмент оптими-
зации гиперпараметров SMAC3 [42]. Так как схема может использоваться
в двух вариантах — как самостоятельный алгоритм и в связке с PESA-II,
были найдены два набора параметров: RT = exp, kmax = 8, p = 0,33 с раз-
делением на группы для первого варианта и RT = decremental, kmax = 4,
p = 0,5 без использования групп для второго. Схемы с этими парамет-
рами будем называть VNMSfast и VNMSlong соответственно.
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Рис. 6. Зависимость показателей качества от количества оцениваний
целевой функции, выделенных на эволюционный алгоритм:

a — расстояние от эталона, б — гиперобъём

3.4. Распределение бюджета между этапами. В этом экспери-
менте производится проверка, что соотношение вычислительных бюдже-
тов, выделенных на построение решений с помощью схемы VNMS и на их
последующее улучшение с помощью эволюционного алгоритма, выбра-
но верно. Для этого выполнена серия запусков с одинаковым суммарным
бюджетом, равным, как и ранее, 120 000, но с разным соотношением бюд-
жетов между этапами. На рис. 6 отражены зависимости среднего рас-
стояния от эталона и среднего гиперобъёма от количества оцениваний
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целевой функции, выделенных на эволюционный алгоритм. Остальной
бюджет потрачен предложенной схемой на генерацию начальных реше-
ний. Закрашенная полоса обозначает доверительный интервал для уров-
ня доверия 0,95.

Из графиков видно, что минимум расстояния, как и максимум объё-
ма, достигается при бюджете, выделенном на эволюционный алгоритм,
равном 80 000. Это говорит о том, что соотношение бюджетов, использо-
ванное ранее, близко к оптимальному, хотя можно добиться небольшого
улучшения, если увеличить бюджет на улучшение решений эволюцион-
ным алгоритмом.

3.5. Сравнение схем. В этом пункте сравниваются схемы, выбран-
ные ранее, а именно: PAES+PESA-II, VNMSfast+PESA-II и VNMSlong.
Первые две схемы двухэтапные, где часть бюджета выделяется на по-
строение начальных решений, а оставшийся бюджет расходуется PESA-
II, использующим эти решения в качестве стартовых. Для краткости обо-
значений назовём двухэтапные схемы PPESA и VPESA соответственно,
а для алгоритма VNMSlong будем также использовать просто обозначение
VNMS. Общий объём вычислений для всех трёх схем примерно одинаков
и составляет 12 минут или 120 000 вычислений целевой функции.

Каждый алгоритм запущен по 10 раз, а затем с использованием ре-
зультатов этих запусков применены два U-критерия Манна — Уитни [40]
для каждого примера, каждой пары вариантов запусков и всех индика-
торов, за исключением индикаторов R1 и R2. Нулевая гипотеза состоит
в том, что вероятность того, что значение показателя для первого ал-
горитма в попарном сравнении будет лучше значения для второго ал-
горитма, не превышает вероятности того, что значение показателя для

Таблица 1

Число побед в попарных сравнениях выбранных схем

Показатель PPESA:VPESA VPESA:VNMS VNMS:PPESA

Гиперобъём 1:11 11:0 6:6

Вклад 1:7 11:0 1:8

Расст. до эталона 3:7 12:0 1:11

Расст. от эталона 1:12 11:0 9:3

ε-индикатор 0:11 2:2 0:12

Макс. ошибка 5:4 9:0 1:7

R1 0:11 2:2 10:0

R2 0:11 2:2 11:0

Omin 0:12 0:3 13:0

Число решений 0:10 13:0 2:10
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второго варианта будет лучше значения для первого варианта. Для ин-
дикаторов R1 и R2 проверены критерии знаковых рангов Уилкоксона [41]
с нулевой гипотезой о том, что один вариант не лучше другого с точки
зрения значений индикаторов R1, R2 (п. 3.1).

Говорим, что первый алгоритм выигрывает на данном примере по дан-
ному показателю, если нулевая гипотеза о том, что второй алгоритм
не лучше первого, отвергается и принимается альтернативная гипотеза
о том, что он лучше. Аналогично говорим, что первый алгоритм про-
игрывает, если принимается альтернативная гипотеза о том, что второй
алгоритм лучше в этом случае и по данному показателю. В случае, если
не принимается ни одна из альтернативных гипотез, говорим, что эти
варианты эквиваленты. Результаты сравнений представлены в табл. 1.
Первое число пары, разделённое двоеточием — это число побед первого
алгоритма в паре, а второе число — число побед второго.

Как видно из табл. 1, двухэтапная схема с использованием VNMSfast

для генерации исходных решений работает наилучшим образом из прове-
ренных вариантов. Схема VNMSlong также даёт хорошие результаты. Хо-
тя гибридная схема, использующая эволюционные алгоритмы, аппрок-
симирует границу Парето вблизи исходного решения намного лучше,
чем VNMSlong, последняя значительно превосходит эволюционные ме-
тоды (включая PAES) в поиске решений с малыми значениями O(w).
Это приводит к улучшению расстояния от эталона, ε-индикатора и Omin

и сопоставимым результатам с точки зрения гиперобъёма. Схема VPESA
использует преимущества обоих подходов, что приводит к получению бо-
лее качественных решений.

Таблица 2

Средние значения показателей

и относительное улучшение алгоритмов

Показатель PPESA VNMS VPESA Улучш.
VNMS

Улучш.
VPESA

Гиперобъём 0,336 0,345 0,381 0,043 0,153

Вклад 0,164 0,113 0,211 −0,133 0,392

Расст. до эталона 0,010 0,020 0,008 −0,914 0,201

Расст. от эталона 0,102 0,070 0,046 0,222 0,494

ε-индикатор 0,299 0,131 0,135 0,511 0,492

Макс. ошибка 0,114 0,169 0,106 −1,028 −0,240
Omin 177,163 166,061 166,783 0,063 0,060

Число решений 32,489 25,207 42,990 −0,198 0,316

Расстояние 0,537 1,529 0,505 — —
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В табл. 2 представлены средние значения показателей и относитель-
ные улучшения этих показателей для предложенных схем относительно
эволюционного алгоритма. Для показателя «Расстояние между решени-
ями» не приведены значения улучшения, так как он не отражает напря-
мую качество решений.

Видно, что хотя алгоритм VNMSlong проигрывает по некоторым по-
казателям, двухэтапная схема VPESA превосходит эволюционные алго-
ритмы почти по всем показателям на 15–49%.

3.6. Дисперсия схемы. Наконец, проведены эксперименты с целью
установить разброс качества получаемых решений, для чего схема была
запущена 80 раз на каждом примере. В табл. 3 представлены результаты
этих экспериментов. Колонка «Стандартное отклонение» содержит зна-
чение среднеквадратического отклонения для каждого параметра, усред-
нённого по всем примерам, а колонка «Относительное стандартное от-
клонение» — величину стандартного отклонения, поделённого на среднее
значение показателя, также усреднённую по всем примерам.

Таблица 3

Статистики показателей качества решений

Показатель Среднее Станд.
отклон.

Относит.
станд.
отклон.

Гиперобъём 0,370 0,019 0,051

Вклад 0,109 0,041 0,498

Расст. до эталона 0,012 0,003 0,266

Расст. от эталона 0,060 0,014 0,239

ε-индикатор 0,140 0,040 0,303

Макс. ошибка 0,132 0,035 0,265

Omin 165,786 2,627 0,016

Число решений 42,945 2,969 0,076

Расстояние 0,515 0,142 0,429

Из табл. 3 видно, что некоторые показатели имеют небольшой раз-
брос, в то время как другие могут значительно отклоняться от среднего
значения. Наибольший разброс имеет вклад в эталонное решение, так как
эта метрика зависит от точного расположения решений в пространстве
целевых функций: если хоть по одной целевой функции решение чуть ху-
же, то оно не засчитывается как решение, вносящее вклад. Также сильно
меняется расстояние между решениями, хотя число решений на Парето-
границе меняется несильно. Вместе с малым изменением гиперобъёма
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это может говорить о том, что основные опорные точки находятся вер-
но, но промежуточные точки могут находиться в разных частях Парето-
границы. Это же может быть причиной средних разбросов расстояний
от и до эталона, ε-индикатора и максимальной ошибки.

Заключение

В работе рассмотрена новая двухкритериальная задача оптимизации
«чёрного ящика» для управления потоком трафика в сети. Задача за-
ключается в поиске такой реконфигурации весов для сетевых каналов,
используемых протоколом маршрутизации, при которой число перегру-
женных каналов сведено к минимуму, а разница между старыми и но-
выми весами минимальна. Новые веса не должны увеличивать общий
поток и не должны создавать новые перегруженные каналы. В ходе ра-
боты разработана специализированная схема для решения этой задачи
и проведены сравнительные эксперименты для этой схемы и метаэври-
стических алгоритмов общего назначения.

Эксперименты показали, что алгоритм PESA2 из библиотеки MOEA
Framework работает наилучшим образом среди проверенных метаэври-
стик, часто встречающихся в литературе. Тесты показали, что хотя упо-
мянутые алгоритмы могут находить хорошую границу Парето, им труд-
но находить решения с небольшим числом перегруженных каналов, по-
этому они значительно выигрывают от хороших начальных точек. Эти
алгоритмы могут эффективно заполнять пробелы между заданными точ-
ками.

Обнаружено, что изменение весов по одному не позволяет найти хоро-
шие решения с точки зрения числа перегруженных каналов, а просмотр
окрестности, состоящий в изменении нескольких весов, занимает слиш-
ком большое время. Ввиду этого в работе разработана модель целочис-
ленного линейного программирования (6)–(11) для поиска наилучшего
решения в аппроксимации большой окрестности. Для этой модели вы-
числяются изменения нагрузки на канал после изменения одного веса.
Модель ищет комбинацию из нескольких модификаций, которая миними-
зирует число перегруженных каналов. Затем предложен итерационный
алгоритм VNMS для исходной задачи, основанный на этой модели. Этот
алгоритм изменяет параметры модели для получения более качествен-
ных итоговых решений.

Алгоритм VNMS может быть использован для двух целей: найти ре-
шение с небольшим числом перегруженных каналов за короткое время
или найти всё множество Парето. Во втором случае алгоритм демон-
стрирует хорошие результаты при решении однокритериальной задачи
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минимизации числа перегруженных каналов, которые близки к резуль-
татам, полученным с помощью гибридного алгоритма на основе попу-
ляционных методов и известного алгоритма PAES. Комбинация VNMS
с алгоритмами, основанными на популяции, показывает статистически
лучшие на 15–49% результаты для исходной задачи, поскольку она ис-
пользует преимущества обоих подходов.
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A HYBRID ALGORITHM FOR A TWO-OBJECTIVE TRAFFIC
ENGINEERING PROBLEM
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Abstract. We consider an Internet traffic routing problem. The paths
for requests are assigned implicitly by setting link weights. The loads of
links are generated by a simulator. If the load of a link is greater than its
capacity, then the link is called congested. Our goal is to minimize two
objective functions: the number of congested links and the distance be-
tween the initial and current weight vectors. The problem also includes
two constraints: the total link flow in the network has an upper bound
and new congested links are unwanted. We propose a new two-stage
evolutionary scheme. The scheme employs a local search algorithm with
a large neighbourhood to find an initial approximation of the Pareto set.
The algorithm utilizes an integer linear programming model to deter-
mine the best solution in the neighbourhood. We compare the proposed
scheme with well-known evolutionary algorithms using instances with
628 links and 1324 requests. According to the experiments, the proposed
scheme constructs solutions statistically better at 15–49% for many per-
formance indicators (9 out of 10). Tab. 3, illustr. 6, bibliogr. 42.

Keywords: black box optimization, matheuristic, variable neighbour-
hood search, OSPF, evolutionary algorithm.
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