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Аннотация. Исследуется пороговая устойчивость задачи с меди-
анным размещением предприятий и фабричным ценообразованием.
Задача пороговой устойчивости имеет следующие отличия от ис-
ходной двухуровневой постановки: в задаче верхнего уровня макси-
мизируется отклонение бюджетов потребителей от ожидаемых зна-
чений при условии, что доход производителя не меньше заданного
порога. Главное отличие исследуемой постановки от задач, чья по-
роговая устойчивость изучалась ранее, заключается в том, что при
фиксированном размещении предприятий задача фабричного цено-
образования NP-трудна в сильном смысле.

Для решения задачи пороговой устойчивости предлагается ал-
горитм на основе спуска с чередующимися окрестностями (VND).
Численное исследование алгоритма проводится на известных при-
мерах и случайно сгенерированных данных. Эксперимент показал,
что идея итеративного вычитания радиуса пороговой устойчивости
из бюджетов потребителей, впервые реализованная в данной работе,
сильно снижает время работы алгоритма. На примерах, для кото-
рых был найден оптимум, алгоритм ошибся в среднем на 0,63%.
На всех примерах алгоритм находит решение в среднем на 2,97%
лучше, чем решатель Gurobi. Табл. 4, ил. 2, библиогр. 33.

Ключевые слова: двухуровневая задача, пороговая устойчивость,
радиус пороговой устойчивости, размещение производства, фабрич-
ное ценообразование, спуск с чередующимися окрестностями.
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Введение

В настоящей работе продолжаются исследования пороговой устойчи-
вости двухуровневых задач размещения и ценообразования [1–4]. Нефор-
мально устойчивость — это свойство оптимизационной задачи, которое
выражает в том или ином смысле меру её нечувствительности к неопре-
делённости в исходных данных. Любой изученный тип устойчивости свя-
зан с определённым типом неопределённости в исходных данных. В за-
висимости от типа доступной информации такие проблемы исследуются
в рамках следующих направлений: стохастического программирования,
оптимизации на основе нечёткого представления данных, робастной оп-
тимизации, постоптимального анализа чувствительности и устойчивости
решений задач линейного и целочисленного программирования [5–10].

С каждым из классических подходов к анализу надёжности решений
при различных возмущениях исходных данных связаны определённые
проблемы. В основе моделей стохастического программирования лежит
информация о вероятностном распределении случайных параметров, ко-
торая на практике зачастую недоступна. Ряд исследований демонстриру-
ет очень высокую сложность многоэтапных задач стохастического про-
граммирования, которые оказываются PSPACE-трудными [5]. Разработ-
ка моделей на основе нечёткого представления данных существенно бо-
лее сложное занятие, чем классическое математическое моделирование.
Качество получаемых моделей существенно зависит от качества исполь-
зуемых экспертных оценок.

Узкое место робастной оптимизации заключается в том, что её при-
менение ориентируется на учёт худших сценариев [7]. С вычислительной
точки зрения это приводит к решению значительно более сложных оп-
тимизационных задач, чем исходная постановка. Некоторые полиноми-
ально разрешимые задачи становятся NP-трудными в робастной поста-
новке [11–15].

Подход к исследованию неопределённости на основе постоптимально-
го анализа чувствительности и устойчивости решений попросту игнори-
рует влияние неопределённости данных в своих моделях. Сам по себе
анализ чувствительности — только лишь инструмент для анализа устой-
чивости решения, и он не может быть использован для поиска решений,
устойчивых к вариации данных. Таким образом, помимо проблем с по-
лучением информации, которая требуется в том или ином подходе при
анализе устойчивости задачи, возникают и существенные вычислитель-
ные трудности.

Относительно недавно в обсуждаемой области возникло новое направ-
ление исследований, названное пороговой устойчивостью. При исследо-
вании устойчивости задачи Вебера авторы [16] предложили применить
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пороговую модель вместо робастной оптимизации. В качестве неопреде-
лённых данных применён вектор спроса, а для того чтобы не допустить
слишком большого роста транспортных затрат, введён порог, ограничи-
вающий значение целевой функции сверху.

В задаче пороговой устойчивости для заданного набора входных дан-
ных задачи Вебера вместо минимизации транспортных расходов ищет-
ся размещение предприятий с максимальным радиусом устойчивости
и транспортными затратами, не превосходящими заданного бюджетно-
го порога. В [17] эта идея реализована для задачи о p-медиане и для
простейшей задачи размещения предприятий.

Далее в работе используется близкое по смыслу определение радиуса
пороговой устойчивости, в котором с каждым размещением предприя-
тий связывается величина, равная максимальному отклонению спроса
от ожидаемых значений при условии, что выполняется пороговое огра-
ничение. Такое определение восходит к впервые введённому в [18] поня-
тию радиуса устойчивости, на основе которого в [1] предложен радиус
пороговой устойчивости для двухуровневых задач. Небольшой, но ин-
формативный обзор работ, связанных с понятием радиуса устойчивости,
и развитых на его основе подходов к исследованию устойчивости опти-
мизационных задач можно найти в [1, 2, 19–25].

Идея конструкции такова, что с каждой оптимизационной задачей
можно связать задачу пороговой устойчивости, в которой ищется макси-
мальное значение параметра (радиус устойчивости), ограничивающего
нормы вариаций исходных данных исследуемой задачи, и подходящее
допустимое решение базовой постановки, удовлетворяющее пороговому
ограничению. В [1] этот подход обобщён и применён к исследованию по-
роговой устойчивости многоуровневых задач размещения и ценообразо-
вания.

Первые результаты в области пороговой устойчивости двухуровне-
вых задач получены в работах [1–4]. Задачи такого типа образуют но-
вый класс двухуровневых задач, для которых не известны ни точные,
ни приближённые методы решения. Исследование новых классов двух-
уровневых задач несомненно является важной теоретической проблемой,
поскольку при этом разрабатываются новые точные и приближённые ме-
тоды для их решения. Современное состояние дел в области двухуров-
невой оптимизации можно найти в обзорах [26, 27].

В [1] впервые исследована пороговая устойчивость задачи ценообразо-
вания с различными ценовыми политиками и задачи конкурентного це-
нообразования. Обзор по проблемам размещения производства и ценооб-
разования и пороговой устойчивости можно найти в [2]. В [3, 4] изучают-
ся задачи с медианным ограничением на открытие предприятий и двумя
стратегиями ценообразования: равномерной и дискриминационной.
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В текущей работе впервые исследуется пороговая устойчивость NP-
трудной в сильном смысле задачи медианного размещения производ-
ства и фабричного ценообразования [30, 31]. Производитель определя-
ет, в каких местах он должен открыть заданное количество предпри-
ятий, и решает, какие цены на однородную продукцию нужно устано-
вить на каждом из них (фабричное ценообразование), чтобы максими-
зировать прибыль от обслуживания потребителей. Каждый потребитель
имеет ограниченный бюджет, который он готов потратить на покупку
и транспортировку продукта в единичном экземпляре. Потребители дей-
ствуют рационально, т. е. минимизируют свои затраты. Будем полагать,
что транспортные затраты известны и неизменны, а информация о бюд-
жетах неточная, но предполагается, что известны ожидаемые значения.
В таком случае множество сценариев (неопределённость) задаётся как
множество отклонений бюджетов от прогнозируемых значений.

В разд. 1 приводятся постановка и математическая модель исследуе-
мой проблемы. В разд. 2 содержатся результаты о вычислительной слож-
ности задачи пороговой устойчивости. Приближённые алгоритмы для её
решения предлагаются в разд. 3, а в разд. 4 описывается численный экс-
перимент для сравнения разработанных алгоритмов с решателем Gurobi.
В заключении обсуждаются полученные результаты и направления даль-
нейших исследований.

1. Постановка задачи пороговой устойчивости

Прежде чем сформулировать постановку задачи пороговой устойчи-
вости, заметим, что робастная оптимизация и пороговая устойчивость ис-
следуют один тип неопределённости. Однако, в робастной оптимизации
предполагается, что вектор данных задачи не известен, но принадлежит
некоторому множеству, которое описывает неопределённость и называет-
ся множеством сценариев. Оптимальное решение в такой задаче строится
с учётом всех сценариев и фактически сводится к решению минимаксной
задачи, ограничения которой удовлетворяют всем сценариям [7]. В зада-
че пороговой устойчивости предполагается, что вектор данных известен
и необходимо найти такое множество возмущений, для которого найдётся
допустимое решение, удовлетворяющее пороговому ограничению. Иско-
мая область возмущений определяется радиусом пороговой устойчиво-
сти.

В [1] содержится формальное определение радиуса пороговой устой-
чивости и постановка задачи пороговой устойчивости для оптимизаци-
онных задач. Основная идея этого подхода заключается в следующем.
Пороговое значение в таких задачах — это величина дохода, которую ра-
циональный лидер считает достаточной. Далее, радиус устойчивости
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допустимого решения задачи — это такое число, для которого любое од-
новременное возмущение бюджетов клиентов на величину, не превыша-
ющую этого числа, не нарушает допустимости этого решения, а значение
целевой функции на этом решении не превышает значения выбранного
порога.

Пусть V — некоторый порог. В задаче пороговой устойчивости необ-
ходимо найти допустимое решение, которое удовлетворяет пороговому
ограничению и имеет максимальный радиус устойчивости.

Там же приводится модификация этого подхода для двухуровневых
задач и реализация для задач ценообразования. Разделим переменные
двухуровневой задачи на две группы (x, y), где x— переменные верхнего
уровня, y— переменные нижнего уровня. В определении радиуса устой-
чивости заменяем требование допустимости решения при возмущении
бюджетов условием существования y такого, что (x, y) является допу-
стимым решением двухуровневой задачи.

При анализе пороговой устойчивости двухуровневой задачи необходи-
мо найти вектор значений переменных верхнего уровня x с наибольшим
радиусом возможного варьирования входных данных, при котором целе-
вая функция продолжает удовлетворять пороговому ограничению.

В рассматриваемой постановке варьируются не все входные данные,
а только бюджеты потребителей, возмущение которых происходит в сто-
рону их уменьшения. При увеличении бюджетов задача пороговой устой-
чивости становится тривиальной, а радиус пороговой устойчивости стре-
мится к бесконечности. Таким образом, в задаче ниже фиксируем доход
производителя и ищем решение, которое предоставляет доход не менее
зафиксированного.

Приведём содержательную постановку базовой задачи размещения
производства и ценообразования, пороговая устойчивость которой ис-
следуется ниже. Сформулируем её в виде игры Штакельберга «лидер —
последователи». В качестве лидера выступает производитель, который
размещает r предприятий и формирует цены на каждом из них. В каче-
стве последователей — потребители, выбирающие предприятия так, что-
бы минимизировать суммарные затраты на покупку и транспортировку
товаров. При этом потребитель совершает покупку только в том случае,
если эти затраты не превышают его бюджета. Требуется выбрать такое
размещение предприятий и такие цены, при которых доход производи-
теля максимален.

Далее рассматривается оптимистическая постановка двухуровневой
задачи, для чего необходимо ввести следующее соглашение. Если у по-
требителя есть несколько предприятий с одинаковой минимальной сум-
мой платежей, то он выберет предприятие с минимальными транспорт-
ными затратами.
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Обычно в подобных постановках рассматриваются три следующие
стратегии ценообразования [32]:
• равномерное (uniform pricing) — на всех предприятиях устанавлива-

ется одна цена;
• фабричное (mill pricing) — на каждом предприятии устанавливается

своя цена;
• дискриминационное (discriminatory pricing) — на каждом предприя-

тии для каждого потребителя устанавливается своя цена.
В настоящей статье рассматривается фабричное ценообразование.
Отличие задачи пороговой устойчивости от базовой постановки — в за-

ранее заданном доходе производителя, который определяет пороговое
ограничение, и в наличии неопределённости в бюджетах потребителей,
для которой необходимо предусмотреть максимально возможное откло-
нение от ожидаемых (определённых заранее) бюджетов.

Для того чтобы сформулировать математическую модель задачи по-
роговой устойчивости, введём следующие обозначения и переменные.

Обозначения:
• I = {1, . . . , n}— множество возможных мест для открытия пред-

приятий;
• J = {1, . . . ,m}— множество потребителей;
• r ∈ Z — число размещаемых предприятий;
• bj ∈ Z— бюджет потребителя j;
• cij ∈ Z— транспортные затраты потребителя j при обслуживании

на предприятии i;
• V ∈ Z — доход производителя.
Переменные:
• ρ ∈ Q+ — радиус пороговой устойчивости;
• pi ∈ Q+ — цена товара на предприятии i;

• xij =
®
1, если потребитель j обслуживается на предприятии i,

0 иначе.

• yi =
®
1, если предприятие i открыто,

0 иначе.
Двухуровневая смешанно целочисленная квадратичная математиче-

ская модель задачи пороговой устойчивости имеет следующий вид:

ρ→ max
p,y,x,ρ

, (1)
∑

i∈I

∑

j∈J

pixij > V, (2)

∑

i∈I

yi = r, (3)
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yi ∈ {0, 1}, pi, ρ ∈ Q+, x ∈ F∗(p, y, ρ), i ∈ I, j ∈ J, (4)

где F∗(p, y, ρ)— множество оптимальных решений задачи нижнего уров-
ня: ∑

i∈I

∑

j∈J

(bj − cij − ρ− pi)xij → max
x
, (5)

∑

i∈I

xij 6 1, j ∈ J, (6)

xij 6 yi, i ∈ I, j ∈ J, (7)

xij ∈ {0, 1}, i ∈ I, j ∈ J. (8)

Максимизируя целевую функцию (1) на верхнем уровне, получим
максимально возможное отклонение от ожидаемых (данных) размеров
бюджетов. Неравенство (2) устанавливает пороговое ограничение, га-
рантирующее, что доход производителя не меньше заданного, а равен-
ство (3) требует, чтобы было открыто ровно r предприятий. Условия (4)
определяют область значений переменных верхнего уровня и фиксируют
фундаментальное свойство двухуровневых задач: переменные нижнего
уровня x принимают свои значения из множества оптимальных решений
задачи нижнего уровня. Таким образом, в работе исследуется оптими-
стический вариант постановки. Целевая функция нижнего уровня (5)
представляет собой сумму неизрасходованных потребителями средств,
а ограничения (6)–(8) гарантируют, что каждый потребитель обслужи-
вается не более чем одним предприятием производителя, которое должно
быть открыто.

2. Вычислительная сложность задачи пороговой устойчивости

Используемые далее понятия и обозначения классов сложности, свя-
занные с полиномиальной и аппроксимационной иерархиями, можно най-
ти в [2, 4, 33]. Будем предполагать, что переменные ρ и p целочисленные.
Обозначим через Dρ и D стандартные задачи распознавания для зада-
чи (1)–(8) и базовой задачи соответственно. Приведём доказательство
следующей теоремы в варианте, который демонстрирует тесную связь
между этими задачами распознавания.

Теорема 1. Задача Dρ NP-полна в сильном смысле.

Доказательство. Будем следовать идее, использованной при обос-
новании аналогичного результата в [4], при этом необходимо учесть осо-
бенности новой постановки. Покажем, что задача Dρ полиномиально сво-
дится к некоторому модифицированному варианту задачи D. Для этого
рассмотрим произвольный пример с ответом «да» задачи Dρ с некоторой
целой константой ρ̂.
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Из определения задачи Dρ следует, что существует такое допустимое
решение (ρ, y, p, x), что ρ > ρ̂. Можно считать, что ρ = ρ̂. Действительно,
если ρ > ρ̂, то при уменьшении ρ до ρ̂ при фиксированных (y, p) будет
изменяться только оптимальное решение x задачи нижнего уровня, так
как могут появиться клиенты, бюджеты которых увеличатся, и они будут
обслужены на открытых предприятиях. Доход лидера при этом только
возрастёт, т. е. пороговое ограничение не будет нарушено.

Тем самым существование для некоторого целого ρ̂ такого допусти-
мого решения (ρ, y, p, x), что ρ > ρ̂, эквивалентно существованию такого
размещения предприятий y и такого набора цен, при которых в базовой
задаче с бюджетами bj − ρ̂, j ∈ J, множеством открытых предприятий
{i | yi = 1} и множеством цен p доход лидера больше заданного порога V.

Таким образом, для заданного целого ρ̂ требуемые в базовой задаче
размещение y и набор фабричных цен p могут быть найдены за неде-
терминированное полиномиальное время, если в задаче Dρ ответ «да».
Отсюда следует, что задача Dρ принадлежит классу NP.

Полнота задачи Dρ в классе NP следует из полиномиальной сводимо-
сти задачи D к задаче Dρ. Действительно, в D для заданного порога V
надо найти допустимое решение (y, p, x), которое приносит лидеру доход
не меньше порога. В качестве исходных данных задачи Dρ возьмём ρ̂ = 0
и исходные данные задачи D. Из результатов, полученных в [2], следует,
что задача D NP-полна в сильном смысле. Теорема 1 доказана.

Теорема 2. Для задачи (1)–(8) не существует детерминированных

полиномиальных приближённых алгоритмов с абсолютной или относи-

тельной оценкой уклонения от оптимального решения, если P 6= NP.

Доказательство. Предположим, что существует детерминирован-
ный полиномиальный приближённый алгоритм для задачи (1)–(8). По-
кажем, что тогда задача D полиномиально разрешима. Рассмотрим про-
извольный вход данной задачи с порогом V. Применим приближённый
алгоритм к входу задачи (1)–(8), который получается из входа задачи D
так же, как в доказательстве теоремы 1. Если в задаче D для порога V
ответ «да», то алгоритм выдаст некоторое приближённое допустимое ре-
шение (ρ, y, p, x) задачи (1)–(8). Если ρ > 0, то, рассуждая как в доказа-
тельстве теоремы 1, получим её допустимое решение (0, y, p, x̂), которое
подтверждает, что в задаче D для текущего входа ответ «да». Таким
образом получаем полиномиальный алгоритм для задачи D, что проти-
воречит условию P 6= NP. Теорема 2 доказана.

Сформулируем ещё одно утверждение, которое следует из доказанных
теорем и позволяет уточнить возможности полиномиальных алгоритмов
относительно исследуемой задачи.
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Следствие 1. Для задачи (1)–(8) можно разработать точный поли-

номиальный алгоритм только в классе детерминированных алгоритмов

с оракулами из класса NP, если P 6= NP.

Доказательство. Из теорем 1 и 2 следует, что задача (1)–(8) при-
надлежит классу NPO, причём лежит выше класса Exp-APX. В силу
предположения классы NPO и PO не совпадают, следовательно, для за-
дачи (1)–(8) не существует полиномиального детерминированного алго-
ритма. Из включения NPO ⊆ ∆P

2 O, где ∆P
2 O — класс оптимизационных

задач, разрешимых детерминированными полиномиальными алгоритма-
ми с оракулами из класса NP, следует требуемый результат. Следствие 1
доказано.

Полученные результаты о неаппроксимируемости утверждают, что
невозможно разработать детерминированные полиномиальные точные
и приближённые алгоритмы с оценками относительного уклонения. Это
означает, что исследуемая задача пороговой устойчивости либо NPO-
полна относительно подходящей сводимости, сохраняющей аппроксими-
руемость, либо лежит в промежуточном классе задач выше класса Exp-
APX.

3. Алгоритмы

При разработке алгоритмов для решения задачи (1)–(8) использована
VND-эвристика, идея которой содержится в [28]. Позднее эта эвристика
применена в [29–31] для разработки эффективных алгоритмов решения
задачи размещения и фабричного ценообразования. В настоящей работе
для решения задачи пороговой устойчивости разработана модификация
этой эвристики — двухэтапная VND-эвристика. Для определения и вы-
бора лучшего размещения необходимы критерии их сравнения.

Введём некоторые вспомогательные величины и опишем алгоритм
определения радиуса пороговой устойчивости на основе поиска цены. Ес-
ли для поиска цены применить точный алгоритм, то алгоритм опреде-
ления радиуса пороговой устойчивости будет точным. Для поиска цены
при фиксированном размещении используем VND-эвристику, основыва-
ясь на идеях [30, 31].

Пусть d(y, p) = V −∑
i∈I

∑
j∈J

xijpi — сверхприбыль производителя относи-

тельно порога V при фиксированном размещении; c(y, p) =
∑
i∈I

∑
j∈J

xij —

число обслуживаемых клиентов при фиксированном размещении; B =
(b1, . . . , bm)— вектор бюджетов потребителей; PC(y,B)— алгоритм поис-
ка цены при фиксированном размещении [30, 31]. Для поиска радиуса
пороговой устойчивости использовался следующий алгоритм RC(y,B).
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Алгоритм 1. Алгорим RC(y,B)

Вход: y, B.
Выход: ρ— радиус пороговой устойчивости.
1: ρ← 0; p← PC(y,B);
2: if d(y, p) < 0 then stop;
3: else ∆ρ← d(y, p)/c(y, p); ρ← ρ+∆ρ;

4: if ∆ρ < min
i∈I

pi then stop;

5: else B ← B − (∆ρ, . . . ,∆ρ); p←PC(y,B);

6: goto 2;

Предлагаемая ниже реализация алгоритма для поиска цены основа-
на на VND-эвристике, поэтому в функции PC и RC добавим аргумент
flip, ограничивающий число просматриваемых окрестностей. Этот аргу-
мент используется для остановки алгоритма, а именно для процедуры
улучшения, описанной в [4].

Если алгоритм остановился после шага 1, то считаем размещение y
недопустимым. На шаге 2 выполняется проверка возможности увеличить
радиус пороговой устойчивости, и если сверхприбыль положительная,
то увеличиваем радиус. На шаге 4 происходит проверка необходимости
поиска цены, и если есть необходимость, то на шаге 5 ищем цены отно-
сительно новых бюджетов. Тем самым на каждой итерации алгоритма
имеем бюджеты потребителей, содержащие радиус пороговой устойчиво-
сти, размещение и цены для него такие, что доход производителя больше
порога V, т. е. получаем допустимое решение задачи пороговой устойчи-
вости.

Пусть y1 и y2 — различные размещения, для сравнения которых выпи-
шем два критерия. Первый критерий выбирает размещение, при котором
доход производителя больше, а второй — то, для которого больше радиус
пороговой устойчивости.

Критерий 1. Полагаем p1 = PC(y1, B,flip), p2 = PC(y2, B,flip), и ес-
ли
∑
i∈I

∑
j∈J

p1ixij >
∑
i∈I

∑
j∈J

p2ixij , то считаем размещение y1 лучше y2.

Критерий 2. Полагаем ρ1 = RC(y1, B,flip), ρ2 = RC(y2, B,flip), и ес-
ли ρ1 > ρ2, то считаем размещение y1 лучше чем y2.

С целью построения основного алгоритма для размещения y опреде-
лим окрестность k-Swap(y) и процедуру улучшения k-Improve(y), как это
сделано в [3]. Здесь k, k ∈ N— некоторые параметры. Для сравнения раз-
мещений в окрестности используем критерии 1 и 2. Основной алгоритм
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Алгоритм 2. Алгорим VND1

Вход: Imax, B, k, flip.
Выход: размещение y и радиус пороговой устойчивости ρ.
1: I ← 0; y ← rand

{
y′ ∈ {0, 1}n | ∑

i
y′i = r

}
— случайный булев вектор;

ρ← RC(y,B,flip); B ← B − (ρ, . . . , ρ);
2: применить локальный поиск для 1-Swap(y) и найти локальный опти-

мум y∗;
3: ρ∗ ← RC(y∗, B,flip); B ← B − (ρ∗, . . . , ρ∗); ρ← ρ+ ρ∗;
4: I ← I + 1; (ŷ, ρ̂)← k-Improve(y∗);
5: if ŷ = y∗ or I > Imax then stop;
6: else ρ̂← RC(ŷ, B,flip); B ← B − (ρ̂, . . . , ρ̂); ρ← ρ+ ρ̂; y ← ŷ;

7: goto 2;

представим в виде вложенной VND-эвристики с двумя этапами. На пер-
вом этапе выбираем размещение, фиксируем его и строим относительно
него окрестность. На втором этапе просматриваем элементы окрестности
и для каждого размещения считаем доход производителя или радиус по-
роговой устойчивости — в зависимости от применяемого критерия.

В алгоритме VND1 для выбора наилучшего размещения используем
критерий 1. Для каждого размещения y из окрестности 1-Swap(y) при
помощи алгоритма PC с параметром flip = 1 находим доход производи-
теля и выбираем то размещение, на котором доход производителя наи-
больший. Далее вычисляем радиус пороговой устойчивости при помощи

Алгоритм 3. Алгорим VND2

Вход: Imax, B, k, flip.
Выход: размещение y и радиус пороговой устойчивости ρ.
1: I ← 0; y ← rand

{
y′ ∈ {0, 1}n | ∑

i
y′i = r

}
— случайный булев вектор;

ρ← RC(y,B,flip); B ← B − (ρ, . . . , ρ);
2: применить локальный поиск для 1-Swap(y) и найти локальный опти-

мум y∗ с радиусом пороговой устойчивости ρ∗ = RC(y∗, B, 1);
3: B ← B − (ρ∗, . . . , ρ∗); ρ← ρ+ ρ∗;
4: if flip > 1 then

5: ρ∗∗ ← RC(y∗, B,flip); B ← B − (ρ∗∗, . . . , ρ∗∗); ρ← ρ+ ρ∗∗;

6: I ← I + 1; (ŷ, ρ̂)← k-Improve(y∗);
7: if ŷ = y∗ or I > Imax then stop;
8: else B ← B − (ρ̂, . . . , ρ̂); ρ← ρ+ ρ̂; y ← ŷ;

9: goto 2;
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алгоритма RC. Отметим, что алгоритме VND1 просмотр окрестности за-
нимает меньшее время, чем в VND2, так как здесь цены для размещения
вычисляются один раз.

В алгоритме VND2 на шаге 2 применяется локальный поиск в окрест-
ности 1-Swap(y). Для каждого размещения из окрестности вычисляем
радиус пороговой устойчивости при помощи алгоритма RC с парамет-
ром flip = 1 и при помощи критерия 2 выбираем локальный оптимум.
Если использовать параметр flip, переданный на вход, то поиск локаль-
ного оптимума сильно замедлится. Для выбранного на шаге 2 локального
оптимума пытаемся улучшить результат на шаге 4, используя алгоритм
RC и параметр flip, полученный на входе алгоритма.

Таблица 1

Результаты численного эксперимента n = 100, m = 40, r = 5

Пример Gurobi VND1 VND2 VND′

2

№ % gap Время gap Время gap Время gap Время

F
L
P

r0
1

10 0 1,1+2 6,5−3 1,5+0 0 7,3−1 5,6−3 1,1+2

30 0 4,2+3 0 1,8+1 0 8,0+0 3,6−2 1,3+2

50 9,5−3 4,3+4 4,7−3 2,7+1 1,4−2 8,3+0 1,4−2 1,5+2

70 1,3−2 4,3+4 3,5−3 2,0+1 4,6−2 2,2+1 3,2−4 1,5+2

90 7,1−2 4,3+4 −3,2−2 5,6+1 −6,7−2 2,8+1 −6,7−2 2,1+2

F
L
P

r0
2

10 0 1,1+2 1,3−9 4,8+0 1,3−9 1,4+0 1,2−2 2,6+2

30 0 4,8+3 1,6−2 1,3+1 0 3,9+0 7,1−2 1,6+2

50 5,0−3 4,3+4 4,7−3 2,3+1 −1,8−4 8,9+0 3,4−2 1,6+2

70 1,1−2 4,3+4 9,1−2 1,0+2 7,0−2 1,8+1 2,1−4 1,4+2

90 6,4−2 4,3+4 2,9−1 1,4+2 2,8−2 2,7+1 2,8−2 1,8+2

F
L
P

r0
3

10 0 8,3+1 0 1,1+0 0 6,4−1 7,5−3 1,3+2

30 0 2,9+3 6,9−4 9,7+0 2,3−3 4,3+0 5,3−2 8,0+1

50 4,2−3 4,3+4 −5,4−5 3,2+1 1,7−2 6,8+0 9,8−3 1,5+2

70 1,8−2 4,3+4 1,9−4 5,2+1 1,9−4 1,2+1 1,9−4 9,4+1

90 6,8−2 4,3+4 2,8−1 6,8+1 7,7−4 1,7+1 7,7−4 1,0+2

F
L
P

r0
4

10 0 5,6+1 3,6−3 2,3+0 3,6−3 3,8−1 6,0−3 5,4+1

30 0 2,3+2 2,9−4 4,3+0 6,9−3 1,7+0 7,9−3 1,1+2

50 0 1,6+3 0 2,3+1 0 4,0+0 3,0−2 7,3+1

70 0 8,0+3 0 3,9+1 7,4−2 7,0+0 2,2−2 8,8+1

90 3,7−2 4,3+4 2,7−1 6,8+1 5,9−3 1,6+1 9,1−2 1,4+2

F
L
P

r0
5

10 0 1,1+2 7,6−3 9,7−1 4,0−3 9,3−1 1,2−2 2,3+2

30 0 2,4+3 8,5−3 2,1+1 1,0−2 3,3+0 4,2−2 2,1+2

50 0 1,3+4 7,4−3 9,3+1 1,5−2 9,2+0 0 4,4+2

70 7,9−3 4,3+4 7,1−5 1,4+2 1,5−2 3,0+1 1,2−1 2,5+2

90 5,4−2 4,3+4 −1,2−1 1,2+2 −2,0−1 4,7+1 −9,1−2 3,1+2
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Таблица 1 (окончание)

Пример Gurobi VND1 VND2 VND′

2

№ % gap Время gap Время gap Время gap Время

F
L
P

r0
6

10 0 6,3+1 0 1,7+0 0 7,3−1 2,3−2 9,6+1

30 0 3,1+3 9,0−3 1,7+1 0 3,1+0 4,8−2 8,1+1

50 0 1,0+4 9,1−3 1,6+1 1,1−2 6,3+0 6,2−2 1,1+2

70 9,7−3 4,3+4 1,2−1 6,6+1 1,3−4 2,7+1 9,7−2 8,2+1

90 5,2−2 4,3+4 2,6−1 7,9+1 6,1−2 4,5+1 −1,4−2 1,6+2

F
L
P

r0
7

10 0 8,9+1 1,0−4 1,6+0 6,5−9 7,2−1 4,3−3 2,5+2

30 0 2,7+3 8,7−3 1,5+1 6,6−3 8,5+0 5,1−2 2,6+2

50 0 1,5+4 1,3−2 1,7+1 0 8,4+0 4,9−2 1,2+2

70 7,4−3 4,3+4 −9,0−3 5,3+1 −1,7−2 2,5+1 −1,3−2 2,7+2

90 3,6−2 4,3+4 1,4−1 6,8+1 9,3−3 2,6+1 9,3−3 1,4+2

F
L
P

r0
8

10 0 5,6+1 0 1,6+0 0 6,1−1 4,9−3 2,7+2

30 0 3,9+3 0 1,2+1 0 7,4+0 2,9−1 1,3+2

50 2,1−3 4,3+4 1,6−4 5,4+1 9,2−3 9,1+0 3,5−2 2,1+2

70 8,6−3 4,3+4 3,3−3 7,1+1 3,3−3 2,8+1 3,2−2 2,0+2

90 7,2−2 4,3+4 1,5−1 1,6+2 −8,6−2 3,1+1 −7,6−2 1,3+2

F
L
P

r0
9

10 0 7,3+1 1.4e-14 1,0+0 1.4e-14 6,0−1 3,1−1 1,9+0

30 0 1,9+3 8,8−3 1,5+1 2,6−3 2,6+0 4,6−2 1,2+2

50 0 6,3+3 0 3,1+1 6,9−3 6,0+0 1,0−3 1,1+2

70 2,7−3 4,3+4 2,4−2 3,9+1 2,1−4 1,0+1 2,1−4 2,1+2

90 3,2−2 4,3+4 1,9−1 6,5+1 5,1−4 1,7+1 2,1−2 9,6+1

F
L
P

r1
0

10 0 5,5+1 8,9−9 3,2+0 1,0−3 1,3+0 5,6−3 2,3+2

30 0 3,2+3 2,2−3 1,4+1 4,8−3 3,9+0 4,7−3 1,5+2

50 8,0−4 4,3+4 5,2−3 6,6+1 1,8−4 8,7+0 1,7−3 9,5+1

70 5,7−3 4,3+4 2,8−4 5,2+1 2,8−4 1,6+1 2,8−4 9,8+1

90 6,0−2 4,3+4 2,1−1 7,8+1 −9,1−4 2,5+1 −9,1−4 1,1+2

В обоих алгоритмах найденный радиус пороговой устойчивости сразу
вычитается из бюджетов потребителей. При вызове алгоритма RC внут-
ри VND вектор бюджетов меняется локально внутри RC. Вычитание ра-
диуса из бюджетов не влияет на результат алгоритма VND (пройденный
им путь), но сильно снижает время работы. В численном эксперимен-
те сравним алгоритм VND2 с его версией, реализованной без вычитания
радиуса пороговой устойчивости из бюджетов потребителей.

Предложенный алгоритм допускает использование мультистарта: за-
пуск на разных стартовых решениях и выбор лучшего из найденных ре-
шений. Результаты такого подхода показаны далее.
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4. Численный эксперимент

Для численного эксперимента использованы входные данные, взятые
из библиотеки «Дискретные задачи размещения», и данные, сгенериро-
ванные случайным образом. Сначала готовим входные данные для ис-
ходной задачи, решаем её и в результате определяем максимально воз-
можный доход производителя V. Далее фиксируем вход исходной задачи,
берём некоторую часть от V в качестве порогового ограничения и по-
лучаем вход для задачи пороговой устойчивости. Варьируя пороговое
ограничение таким образом, для одного входа исходной задачи можно
сгенерировать несколько входов задачи пороговой устойчивости. Более
подробно эта процедура описана в [3].

Таблица 2

Результаты численного эксперимента n = 100, m = 100, r = 5

Пример Gurobi VND1 VND2 VND′

2

№ % gap Время gap Время gap Время gap Время

F
L
P

r0
1

10 0 5,4+2 3,3−9 2,3+1 3,3−9 4,2+0 1,1−2 1,3+3

30 0 1,3+4 8,0−4 6,6+1 0 2,4+1 8,0−4 1,2+3

50 1,1−2 4,3+4 4,1−3 2,1+2 4,1−3 5,8+1 −4,2−5 1,1+3

70 1,6−2 4,3+4 −4,5−3 3,9+2 2,2−4 1,4+2 −6,6−3 8,5+2

90 1,2−1 4,3+4 1,8−1 6,2+2 −3,7−2 3,0+2 −1,8−2 1,1+3

F
L
P

r0
2

10 0 6,2+2 0 2,5+1 0 1,1+1 9,2−3 2,1+3

30 7,1−3 4,3+4 5,3−3 1,5+2 5,5−3 5,7+1 4,8−2 1,3+3

50 1,7−2 4,3+4 −2,9−2 4,1+2 −3,4−2 1,3+2 −3,4−2 3,8+3

70 2,4−2 4,3+4 −4,5−2 4,0+2 −4,8−2 1,2+2 −4,5−2 2,2+3

90 1,0−1 4,3+4 2,5−1 7,1+2 1,7−1 3,6+2 −4,1−2 1,1+3

F
L
P

r0
3

10 0 4,0+2 1,7−3 1,4+1 0 4,7+0 1,0−2 9,2+2

30 0 9,2+3 0 1,0+2 0 2,0+1 2,0−2 2,0+3

50 1,3−2 4,3+4 3,9−3 3,0+2 6,9−4 5,7+1 6,1−5 1,7+3

70 2,3−2 4,3+4 −5,2−2 4,2+2 −4,6−2 9,1+1 9,1−3 1,2+3

90 8,6−2 4,3+4 2,9−1 5,0+2 1,5−1 1,5+2 1,0−1 1,9+3

F
L
P

r0
4

10 0 4,2+2 2,0−4 1,4+1 2,2−3 6,5+0 1,2−2 1,0+3

30 0 1,2+4 0 1,8+2 0 3,6+1 4,7−2 2,3+3

50 1,6−2 4,3+4 −9,2−5 4,1+2 −9,2−5 6,8+1 1,0−2 1,0+3

70 3,6−2 4,3+4 −1,5−2 3,3+2 6,8−3 1,5+2 −1,5−2 1,6+3

90 1,1−1 4,3+4 1,4−1 9,6+2 −1,3−1 3,1+2 −1,3−1 2,1+3

F
L
P

r0
5

10 0 5,2+2 1,5−8 9,0+0 1,5−8 8,2+0 3,7−3 1,4+3

30 0 1,1+4 0 9,2+1 0 3,2+1 1,6−2 9,6+2

50 1,1−2 4,3+4 5,3−3 1,8+2 8,5−3 5,1+1 1,2−2 1,4+3

70 1,5−2 4,3+4 6,7−3 2,5+2 1,5−2 1,6+2 6,7−5 9,6+2

90 7,8−2 4,3+4 1,9−1 3,9+2 0 2,2+2 0 1,2+3
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Таблица 2 (окончание)

Пример Gurobi VND1 VND2 VND′

2

№ % gap Время gap Время gap Время gap Время

F
L
P

r0
6

10 0 6,1+2 1,8−3 1,3+1 7,0−10 5,2+0 4,6−3 1,7+3

30 0 1,0+4 0 1,3+2 0 2,4+1 6,4−3 1,5+3

50 4,6−3 4,3+4 −1,5−2 3,4+2 −1,5−2 8,0+1 −1,3−2 1,0+3

70 1,4−2 4,3+4 2,2−2 4,4+2 −4,4−2 1,2+2 −3,4−2 1,6+3

90 1,0+7 4,3+4 −1,0+0 9,1+2 −1,0+0 1,9+2 −1,0+0 1,0+3

F
L
P

r0
7

10 0 4,8+2 7,6−4 2,2+1 7,6−4 4,0+0 3,6−3 1,7+3

30 0 9,1+3 0 8,4+1 0 2,4+1 1,5−2 8,4+2

50 5,0−3 4,3+4 8,3−3 2,6+2 8,0−3 5,8+1 −1,6−4 1,3+3

70 2,9−2 4,3+4 −1,9−3 4,0+2 1,2−2 1,4+2 2,7−2 8,3+2

90 4,5−2 4,3+4 2,5−1 5,0+2 2,1−2 1,8+2 −9,1−2 1,3+3

F
L
P

r0
8

10 0 4,6+2 3.5e-14 1,8+1 3.7e-14 4,0+0 1,6−2 8,2+2

30 0 1,2+4 0 5,6+1 0 4,3+1 4,4−3 8,4+2

50 1,4−2 4,3+4 9,5−5 1,8+2 2,8−2 5,2+1 1,3−2 1,7+3

70 2,9−2 4,3+4 −1,2−2 2,5+2 4,4−3 9,7+1 −2,1−2 8,7+2

90 1,3−1 4,3+4 8,1−2 8,2+2 −1,6−1 2,5+2 −1,6−1 9,5+2

F
L
P

r0
9

10 0 7,4+2 1,5−3 2,5+1 0 4,3+0 2,1−3 9,0+2

30 0 1,1+4 0 9,7+1 0 2,4+1 5,1−2 7,2+2

50 1,9−2 4,3+4 −3,3−2 3,7+2 −4,0−2 1,0+2 1,1−1 5,4+2

70 3,9−2 4,3+4 −5,4−2 3,8+2 −5,0−2 9,8+1 −6,1−2 6,1+2

90 1,4−1 4,3+4 2,1−1 5,0+2 −5,1−2 2,7+2 −5,1−2 5,7+2

F
L
P

r1
0

10 0 6,8+2 3,0−4 1,6+1 2,8−9 8,3+0 3,0−4 1,4+3

30 2,1−3 4,3+4 −3,3−3 1,3+2 −8,1−5 5,0+1 1,4−2 1,3+3

50 1,3−2 4,3+4 3,1−3 2,0+2 1,2−4 1,6+2 1,2−4 1,4+3

70 1,7−2 4,3+4 −1,0−2 6,6+2 4,9−3 1,2+2 −2,6−2 1,1+3

90 9,4−2 4,3+4 4,3−1 4,7+2 −3,0−3 2,0+2 5,4−2 2,0+3

Сначала рассмотрим примеры задач из библиотеки. Для поиска точ-
ного решения применяем решатель Gurobi версии 10. Тестирование про-
изводится на сервере с двумя процессорами AMD EPYC 7502 32-Core
и 512 ГБ оперативной памяти. При этом решатель Gurobi может исполь-
зовать свободные ядра, и каждую задачу решаем параллельно на 7 яд-
рах. Время работы решателя для каждой задачи ограничено 12 ч. Ос-
новной алгоритм выполняем одним потоком, т. е. на одном ядре.

Эмпирически подобраны наилучшие параметры k = 2 и flip = 2, кото-
рые применены в дальнейших экспериментах. Результаты, отражённые
в табл. 1 и 2, получены на входных данных из библиотеки «Дискретные
задачи размещения», а в табл. 3 и 4 — на входных данных, сгенериро-
ванных случайным образом. Полученные значения представлены в экс-
поненциальной записи, при этом порядок числа приводится в нижнем
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индексе мантиссы для экономии места. В колонке % указана доля мак-
симального дохода производителя, взятая в качестве порога V. Красным
отмечено оптимальное значение gap, а синим — значение gap в случае,
если решение предложенного алгоритма лучше в сравнении с решением
Gurobi.

Размерность каждого входа в табл. 1 фиксирована числами n = 100,
m = 40, r = 5. VND′

2 — это версия алгоритма VND2 без вычитания ради-
уса пороговой устойчивости из бюджетов потребителей. Время работы
VND′

2 больше, чем VND2, на всех примерах в среднем в 13 раз. Уско-
рение происходит в силу того, что при вычитании радиуса пороговой
устойчивости из бюджетов потребителей алгоритм чаще останавливает-
ся на шаге 4 алгоритма RC, тем самым экономя время на поиске цен. В 24
из 50 случаев решатель не смог найти оптимального решения. Алгоритм
VND2 с критерием 2 находит в среднем более качественное решение.

Размерность каждого входа в табл. 2 фиксирована числами n = 100,
m = 100, r = 5. Как в предыдущем случае, время работы алгоритма

Таблица 3

Результаты эксперимента на средней и большой размерностях

Пример Gurobi VND1 VND2 VND′

2

№ n m r V % gap Время gap Время gap Время gap Время

1 100 100 10

621 10 3,2−3 4,3+4 −7,5−3 6,4+4 −8,7−5 4,8+3 2,0−1 2,1+4

1863 30 9,2−3 4,3+4 −3,3−2 1,4+5 −2,9−2 1,4+4 −6,4−3 1,1+4

3105 50 1,8−2 4,3+4 −2,5−2 1,5+5 −1,3−2 1,5+4 −1,4−2 2,6+4

4347 70 2,2−2 4,3+4 −5,9−2 1,6+5 −6,0−2 1,9+4 −5,1−2 1,3+4

5589 90 1,0+7 4,3+4 −1,0+0 1,1+5 −1,0+0 1,8+4 −1,0+0 6,2+4

2 20 20 10

101 10 0 9,7+0 1,5−2 4,6−1 1,3−8 3,1−1 5,8−3 1,2+1

303 30 0 2,3+1 2,4−1 3,1+0 2,1−1 7,7−1 2,4−1 5,7+0

505 50 0 2,5+2 7,9−2 1,4+1 7,5−2 1,6+0 7,0−2 1,6+1

707 70 0 4,6+2 1,2−1 2,8+0 5,0−2 2,2+0 3,7−2 3,7+0

909 90 0 5,1+2 8,8−2 1,1+1 1,5−1 2,5+0 5,0−2 4,1+1

3 20 20 15

128 10 0 2,6+1 2,3−2 1,1+1 1,5−1 4,1−1 1,7−1 4,1+1

384 30 0 9,9+1 2,0−2 4,9+0 1,5−2 3,4+0 1,3−1 7,0+0

641 50 0 8,4+1 1,1−1 2,2+1 1,1−1 3,5+0 9,9−2 8,3+0

898 70 0 1,5+2 1,5−1 4,1+0 8,5−2 5,6+0 8,5−2 3,7+1

1154 90 0 1,3+2 3,6−1 2,8+1 2,1−1 3,2+0 1,9−1 3,4+1

4 40 40 10

288 10 2,0−4 4,3+4 5,9−3 1,6+2 4,8−3 2,6+1 7,7−2 1,1+3

866 30 1,3−3 4,3+4 1,6−3 5,8+2 1,2−2 2,2+2 1,6−2 1,8+3

1443 50 2,6−3 4,3+4 −2,2−3 1,0+3 3,5−3 1,2+2 1,1−2 8,6+2

2020 70 4,0−3 4,3+4 3,7−3 1,1+3 −6,7−3 1,3+2 1,4−3 1,2+3

2598 90 5,9−3 4,3+4 1,5−2 1,1+3 7,0−4 2,5+2 8,8−2 5,8+2
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Таблица 3 (окончание)

Пример Gurobi VND1 VND2 VND′

2

№ n m r V % gap Время gap Время gap Время gap Время

5 40 40 15

225 10 0 2,3+2 1,5−2 2,3+2 1,5−2 2,1+1 9,1−3 2,9+3

677 30 1,2−3 4,3+4 −7,4−4 1,0+3 7,4−4 1,9+2 4,0−2 2,7+3

1129 50 3,0−3 4,3+4 8,3−4 2,5+3 1,2−2 2,1+2 2,8−3 5,4+2

1581 70 4,7−3 4,3+4 1,7−2 1,4+3 −1,7−2 5,4+2 1,4−2 1,2+3

2033 90 5,9−3 4,3+4 1,6−1 1,7+3 1,5−1 4,8+2 −3,6−3 8,5+2

6 60 60 10

411 10 1,0−3 4,3+4 5,4−3 4,8+3 3,6−3 2,1+2 1,5−1 1,2+4

1234 30 4,6−3 4,3+4 −1,9−2 6,6+3 −1,6−2 7,6+2 −9,6−3 5,5+3

2058 50 8,9−3 4,3+4 −7,4−3 5,4+3 −1,5−2 1,4+3 5,2−3 4,0+3

2881 70 1,0−2 4,3+4 1,8−2 1,2+4 3,0−2 4,0+3 4,6−2 4,9+3

3704 90 5,0−2 4,3+4 −1,8−1 1,8+4 −1,3−1 2,8+3 −1,4−1 3,6+3

7 60 60 15

381 10 1,5−3 4,3+4 8,9−3 2,0+3 3,2−3 2,0+2 6,5−3 2,0+4

1143 30 3,5−3 4,3+4 −1,2−2 3,6+4 −1,0−2 4,1+3 −5,5−3 1,3+4

1906 50 7,4−3 4,3+4 8,4−2 2,0+4 7,3−2 3,7+3 8,0−2 1,4+4

2669 70 1,8−2 4,3+4 −5,3−2 3,6+4 −4,5−2 5,1+3 −7,6−3 8,1+3

3431 90 5,0−2 4,3+4 −8,9−2 9,8+3 6,3−3 4,0+3 −3,1−2 1,2+4

8 90 90 10

583 10 1,5−3 4,3+4 1,4−3 4,9+3 1,8−3 5,7+2 7,8−2 1,6+4

1749 30 6,6−3 4,3+4 −7,1−3 7,5+3 −1,0−2 3,4+3 −1,7−2 3,2+4

2915 50 4,6−3 4,3+4 −3,1−2 1,7+4 −4,7−2 1,1+4 −4,0−2 1,3+4

4081 70 8,2−3 4,3+4 −5,0−2 3,4+4 −5,1−2 1,5+4 −1,8−2 3,2+4

5247 90 5,1−2 4,3+4 −1,4−1 3,7+4 −1,6−1 1,2+4 −5,8−2 1,9+4

VND′
2 в сравнении с VND2 больше на всех примерах в среднем в 13 раз.

В 32 случаях из 50 решателю не удалось найти оптимального решения,
а в одном случае — хотя бы допустимого. Алгоритм VND2 c критерием 2
в среднем находит решение лучше. Это происходит, скорее всего, в силу
того, что критерий 2 нацелен на поиск максимального радиуса, а не до-
хода производителя. Время работы решателя значительно превышает
время работы алгоритмов VND.

Согласно табл. 3 на примерах средней или большой размерности ал-
горитм VND работает продолжительное время. Здесь отчётливо видно
различие во времени работы алгоритмов VND2 и VND′

2. Количество най-
денных оптимумов — 11 из 40. Так же есть пример, в котором решатель
Gurobi не смог найти допустимого решения за отведённое время работы.
Критерий 2 на этих примерах наиболее предпочтителен.

Результаты в табл. 4 получены на входных данных малой размерно-
сти. Решатель Gurobi нашёл 29 оптимальных решений на 50 примерах.
Алгоритм VND2 находит решение в среднем немного хуже, чем реша-
тель, но время работы в тысячи раз меньше.
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На рис. 1 отображены средние показатели алгоритмов с разными па-
раметрами. По горизонтали отмечен алгоритм VND(k,flip) с парамет-
рами k и flip. Запись VND(k,flip)(x) означает, что использована идея
мультистарта и этот алгоритм запускался x раз. Приведены значение
gap и время работы алгоритмов, масштабированные по максимальному
значению, а максимальное указано в легенде. Из рис. 1 видно, что идея
мультистарта позволяет найти решение лучше, при этом время работы
увеличивается пропорционально количеству запусков.

Если ограничиться примерами, для которых найден оптимум, то для
алгоритма VND наилучшими параметрами будут k = 2 и flip = 2. При
увеличении одного из параметров время счёта сильно возрастает, а зна-
чение целевой функции улучшается незначительно.

Таблица 4

Результаты численного эксперимента на малой размерности

Пример Gurobi VND1 VND2 VND′

2

№ n m r V % gap Время gap Время gap Время gap Время

1 30 30 5

177 10 4,0−4 4,3+4 1,9−3 6,4+0 3,8−5 1,5+0 4,9−2 8,5+1

531 30 2,1−3 4,3+4 1,5−1 9,2+0 1,4−1 5,0+0 1,7−2 1,4+2

885 50 5,5−3 4,3+4 8,1−2 1,5+1 7,8−2 5,1+0 8,3−2 3,9+1

1239 70 1,1−2 4,3+4 3,0−2 9,3+0 1,1−2 6,7+0 −1,9−4 3,9+1

1593 90 3,0−2 4,3+4 2,8−2 1,2+1 5,6−2 6,2+0 5,1−3 3,6+1

2 35 35 5

167 10 0 1,6+2 2,2−3 1,8+0 2,2−3 5,8−1 6,8−3 7,6+1

503 30 2,5−3 4,3+4 2,8−2 2,4+1 2,0−2 3,6+0 9,3−2 2,3+2

839 50 7,8−3 4,3+4 5,5−3 4,0+1 −3,4−3 9,4+0 8,6−3 1,6+2

1175 70 1,2−2 4,3+4 7,4−3 1,9+1 −2,4−2 2,0+1 −2,3−2 7,3+1

1511 90 2,2−2 4,3+4 −8,6−3 1,6+1 −8,6−3 1,5+1 −8,6−3 6,6+1

3 35 35 5

170 10 0 1,3+2 2,3−3 1,8+0 1,3−8 7,5−1 2,3−2 9,6+1

512 30 2,3−3 4,3+4 9,8−3 2,0+1 1,0−2 4,9+0 9,3−2 1,4+2

854 50 9,3−3 4,3+4 −4,2−2 5,6+1 −3,4−2 8,4+0 −3,3−2 1,2+2

1196 70 1,3−2 4,3+4 3,1−2 4,3+1 −1,8−3 1,0+1 2,5−2 6,2+1

1538 90 2,1−2 4,3+4 5,4−2 4,5+1 6,4−2 1,8+1 −3,4−2 6,4+1

4 35 35 5

169 10 0 1,0+2 1,1−3 3,2+0 2,3−3 9,5−1 1,3−2 2,5+2

507 30 3,2−3 4,3+4 3,6−2 3,6+1 3,7−2 6,0+0 1,7−1 1,3+2

845 50 8,2−3 4,3+4 −3,4−2 3,1+1 −4,0−2 9,1+0 4,3−3 7,0+1

1183 70 1,2−2 4,3+4 6,2−4 3,6+1 6,2−4 2,4+1 2,4−2 6,1+1

1521 90 2,7−2 4,3+4 7,6−2 3,0+1 −7,6−2 1,8+1 9,0−2 5,6+1

5 35 35 5

174 10 0 1,2+2 3,4−3 4,5+0 2,3−3 7,2−1 1,4−2 1,3+2

524 30 2,7−3 4,3+4 1,7−2 2,2+1 5,9−3 3,2+0 5,8−2 2,3+2

874 50 7,2−3 4,3+4 −1,6−3 2,0+1 −4,2−3 1,5+1 1,9−2 6,4+1

1224 70 1,2−2 4,3+4 −1,9−3 2,8+1 −1,9−3 1,4+1 2,3−2 5,6+1

1574 90 3,4−2 4,3+4 −6,8−2 2,1+1 −6,8−2 1,3+1 −6,8−2 5,9+1
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Таблица 4 (окончание)

Пример Gurobi VND1 VND2 VND′

2

№ n m r V % gap Время gap Время gap Время gap Время

6 20 20 5

108 10 0 9,6+0 7,2−3 1,7−1 1,2−3 5,5−2 5,0−2 7,6+0

324 30 0 1,2+2 2,0−2 1,4+0 3,0−2 2,7−1 4,1−2 9,4+0

541 50 0 1,1+2 3,3−2 7,2−1 1,6−2 5,8−1 3,0−2 5,1+0

757 70 0 1,2+2 3,9−3 1,9+0 4,1−3 1,2+0 5,5−2 3,4+0

973 90 0 1,4+2 1,6−2 2,6+0 1,2−2 7,0−1 1,5−3 4,6+0

7 25 25 5

151 10 0 1,5+2 7,6−3 1,5+0 3,9−3 2,5−1 7,0−2 3,1+1

454 30 0 4,3+3 5,5−3 6,9+0 1,1−2 1,2+0 1,1−2 2,6+1

757 50 0 4,8+3 1,5−2 8,1+0 5,6−3 2,2+0 5,6−3 1,6+1

1060 70 0 4,5+3 2,2−2 1,1+1 2,2−2 3,6+0 2,2−2 2,7+1

1363 90 0 1,7+3 3,4−2 1,1+1 2,9−1 2,4+0 2,3−2 1,4+1

8 20 20 5

126 10 0 1,3+1 2,3−3 9,5−2 2,3−3 1,2−1 1,8−2 1,2+1

378 30 0 1,4+2 0 8,6−1 2,2−2 3,1−1 3,7−2 4,5+0

631 50 0 1,8+2 1,2−2 1,5+0 1,1−2 5,7−1 1,1−2 4,5+0

884 70 0 1,4+2 2,8−2 2,9+0 1,8−2 6,4−1 1,6−2 7,2+0

1136 90 0 1,9+2 6,4−2 4,6+0 3,2−2 7,7−1 3,2−2 4,8+0

9 15 15 5

98 10 0 2,0+1 7,4−4 7,3−2 5,8−3 4,3−2 1,4−2 2,7+0

294 30 0 3,6+1 1,4−3 2,2−1 2,8−9 2,4−1 2,8−9 1,4+0

491 50 0 3,1+1 2,0−3 2,9−1 2,4−9 2,9−1 2,4−2 8,0−1

688 70 0 4,1+1 3,3−3 2,6−1 8,8−9 3,0−1 8,8−9 1,2+0

884 90 0 4,1+1 5,5−9 8,7−1 5,5−9 2,9−1 5,5−9 1,4+0

10 15 15 10

87 10 0 8,8+0 7,0−2 3,2−1 8,1−2 1,3−1 1,2−1 1,2+1

263 30 0 7,7+1 6,7−2 1,2+0 1,0−2 5,0−1 2,3−2 7,1+0

438 50 0 5,8+1 6,0−2 8,8−1 4,9−2 6,7−1 3,8−2 1,2+0

613 70 0 3,8+1 3,7−2 5,9−1 1,5−2 2,9−1 1,8−2 7,8−1

789 90 0 6,6+1 2,2−2 1,1+0 4,8−9 3,2−1 4,8−9 3,1+0

Из рис. 2 видно, что наименьший gap, отмеченный по вертикали, име-
ет реализация алгоритма с параметрами k = 2, flip = 2 при запуске
10 раз. Алгоритм с параметрами k = 2, flip = 3 и запуском 10 раз спра-
вился в среднем хуже: так происходит из-за того, что стартовое реше-
ние выбирается случайным образом. Эксперименты показывают, что для
идеи мультистарта наилучшее число запусков алгоритма равно 10.

Заключение

Исследование пороговой устойчивости двух- и трёхуровневых задач
размещения и ценообразования начато в работах [1, 2]. На их основе
рассмотрена пороговая устойчивость двухуровневых задач размещения
и ценообразования с медианным типом размещения предприятий [3, 4].
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Рис. 1. Средние значения gap и времени по всем примерам

В указанных работах развит оригинальный подход к разработке алго-
ритмов решения соответствующих задач, основанный на использовании
методов решения исходной задачи и её подзадач. Численный экспери-
мент показал весьма высокую эффективность разработанных алгорит-
мов как по качеству приближённых решений, так и по трудоёмкости
алгоритмов [3, 4]. Однако базовые задачи, для которых исследована по-
роговая устойчивость, объединяет общее свойство — при фиксированном
размещении предприятий соответствующие задачи ценообразования по-
линомиально разрешимы. Стало быть, для объективной оценки подхо-
да, развитого в указанных работах, желательно исследовать пороговую
устойчивость, например, задачи размещения и фабричного ценообразо-
вания, поскольку при фиксированном размещении предприятий задача
фабричного ценообразования NP-трудна в сильном смысле.

В настоящей работе показано, что развитый в [3, 4] подход к разработ-
ке эффективных приближённых алгоритмов для определения пороговой
устойчивости двухуровневой задачи размещения производства и ценооб-
разования оказывается продуктивным и в случае базовой задачи с фаб-
ричным ценообразованием. Для решения задачи пороговой устойчивости
предлагается алгоритм, основанный на спуске с чередующимися окрест-
ностями (VND).
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Рис. 2. Среднее значение gap для примеров с известным оптимумом

Численное исследование алгоритма проводится на известных приме-
рах и случайно сгенерированных данных. Эксперименты показывают,
что итеративное вычитание радиуса пороговой устойчивости из бюдже-
тов потребителей значительно снижает время работы алгоритма. На при-
мерах с найденным оптимумом алгоритм ошибается в среднем на 0,63%
относительно оптимального значения целевой функции. На всех приме-
рах алгоритм находит решение со значением целевой функции в среднем
на 2,97% лучше в сравнении с решением Gurobi.

Теоремы 1 и 2 приводят также к следующей гипотезе: задачи порого-
вой устойчивости, исследованные в этой работе, полны в классе NPO от-
носительно подходящей сводимости, сохраняющей аппроксимируемость.

Вторая гипотеза вытекает из следствия 1, анализа доказательств тео-
рем 1, 2 и представленных алгоритмов решения. Точный детерминиро-
ванный полиномиальный алгоритм с оракулом из класса NP, о кото-
ром говорится в следствии 1, легко получить, взяв в качестве оракула
стандартную задачу распознавания. В силу этого высокая эффектив-
ность разработанных алгоритмов связана, возможно, с тем, что исполь-
зованный в работе подход позволяет хорошо аппроксимировать оракул,
доставляющий информацию для детерминированного полиномиального
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точного алгоритма из класса ∆P
2 . С учётом того, что оракул представля-

ет собой NP-полную задачу, в алгоритме используется итеративная про-
цедура поиска (ρ, y, p) в обход фазы недетерминированного угадывания
этих величин, которые и образуют сертификат.

Финансирование работы

Исследование выполнено при финансовой поддержке Российского научного
фонда (проект № 23–21–00424). Дополнительных грантов на проведение или
руководство этим исследованием получено не было.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Литература

1. Panin A. A., Plyasunov A. V. Stability analysis for pricing // Mathemati-
cal optimization theory and operations research. Rev. Sel. Pap. 19th Int. Conf.
MOTOR 2020 (Novosibirsk, Russia, July 6–10, 2020). Cham: Springer, 2020.
P. 57–69. (Commun. Comput. Inf. Sci.; V. 1275).

2. Panin A. A., Plyasunov A. V. The multilevel facility location and pricing
problems: The computational complexity and the stability analysis // Optim.
Lett. 2023. V. 17, No. 6. P. 1295–1315. DOI: 10.1007/s11590-022-01924-3.

3. Vodyan M. E., Panin A. A., Plyasunov A. V. Metaheuristics for finding
the stability radius in the bilevel facility location and uniform pricing prob-
lem // Proc. 19th Int. Asian School-Seminar Optimization Problems of Com-
plex Systems (Novosibirsk, Russia, Aug. 14–22, 2023). Piscataway: IEEE, 2023.
P. 130–135. DOI: 10.1109/OPCS59592.2023.10275325.

4. Водян М. Е., Панин А. А., Плясунов А. В. Исследование пороговой
устойчивости двухуровневой задачи размещения производства и дискрими-
национного ценообразования // Дискрет. анализ и исслед. операций. 2024.
Т. 31, № 3. С. 79–104.

5. Dyer M., Stougie L. Computational complexity of stochastic programming
problems // Math. Program. Ser. A. 2006. V. 106, No. 3. P. 423–432. DOI:
10.1007/s10107-005-0597-0.

6. Кибзун А. И., Кан Ю. С. Задачи стохастического программирования
с вероятностными критериями. М.: Физматлит, 2009. 372 с.

7. Ben-Tal A., Nemirovski A. Robust optimization — Methodology and ap-
plications // Math. Program. Ser. B. 2002. V. 92, No. 3. P. 453–480. DOI:
10.1007/s101070100286.

8. Snyder L. V. Facility location under uncertainty: A review // IIE Trans. 2006.
V. 38. P. 537–554. DOI: 10.1080/07408170500216480.

9. Greenberg H. J. An annotated bibliography for post-solution analysis in
mixed integer programming and combinatorial optimization // Advances in
computational and stochastic optimization, logic programming, and heuristic
search. New York: Springer, 1998. P. 97–147.



Максимизация радиуса пороговой устойчивости 65

10. Correia I., da Gama F. S. Facility location under uncertainty // Location
science. Cham: Springer, 2015. P. 177–203.

11. Ben-Tal A., Nemirovski A. Robust solutions of uncertain linear programs //
Oper. Res. Lett. 1999. V. 25, No. 1. P. 1–13.

12. Yu G., Yang J. On the shortest path problem // Comput. Oper. Res. 1988.
V. 25, No. 6. P. 457–68.

13. Kouvelis P., Yu G. Robust discrete optimization and its applications. Dor-
drecht: Kluwer Acad. Publ., 1997. 358 p.

14. Averbakh I., Lebedev V. Interval data minmax regret network optimization
problems // Discrete Appl. Math. 2004. V. 138. P. 289–301.

15. Aissi H., Bazgan C., Vanderpooten D. Complexity of the min-max and
min-max regret assignment problems // Oper. Res. Lett. 2005. V. 33, No. 6.
P. 634–640.

16. Carrizosa E., Nickel S. Robust facility location // Math. Methods Oper.
Res. 2003. V. 58, No. 2. P. 331–349.

17. Carrizosa E., Ushakov A., Vasilyev I. Threshold robustness in discrete fa-
cility location problems: A bi-objective approach // Optim. Lett. 2015. V. 9,
No. 7. P. 1297–1314.

18. Леонтьев В. К. Устойчивость задачи коммивояжера // Журн. вычисл.
математики и мат. физики. 1975. Т. 15, № 5. С. 1298–1309.

19. Rossi A., Gurevsky E., Battaia O., Dolgui A. Maximizing the robustness
for simple assembly lines with fixed cycle time and limited number of worksta-
tions // Discrete Appl. Math. 2016. V. 208. P. 123–136.

20. Gurevsky E., Rasamimanana A., Pirogov A., Dolgui A., Rossi A. Sta-
bility factor for robust balancing of simple assembly lines under uncertainty //
Discrete Appl. Math. 2022. V. 318. P. 113–132.

21. Pirogov A., Gurevsky E., Rossi A., Dolgui A. Robust balancing of trans-
fer lines with blocks of uncertain parallel tasks under fixed cycle time and space
restrictions // Eur. J. Oper. Res. 2021. V. 290. P. 946–955.

22. Sotskov Yu. N. Assembly and production line designing, balancing and sched-
uling with inaccurate data: A survey and perspectives // Algorithms. 2023.
V. 16, No. 2. Article ID 100. 43 p.

23. Леонтьев В. К., Гордеев Э. Н. Качественное исследование траектор-
ных задач // Кибернетика. 1986. № 5. С. 82–89.

24. Sotskov Yu. N., Leontiev V. K., Gordeev E. N. Some concepts of stabil-
ity analysis in combinatorial optimization // Discrete Appl. Math. 1995. V. 58,
No. 2. P. 169–190.

25. Кузьмин К. Г. Единый подход к нахождению радиусов устойчивости
в многокритериальной задаче о максимальном разрезе графа // Дискрет.
анализ и исслед. операций. 2015. Т. 22, № 5. С. 30–51.

26. Dempe S., Zemkoho A. Bilevel optimization. Advances and next challenges.
Cham: Springer, 2020. 672 p. (Springer Optim. Its Appl.; V. 161). DOI: 10.
1007/978-3-030-52119-6.

27. Talbi E.-G. Metaheuristics: From design to implementation. Berlin: Wiley,
2009. 624 p.



66 М. Е. Водян, А. А. Панин, А. В. Плясунов

28. Mladenovic N., Hansen P. Variable neighbourhood search // Comput.
Oper. Res. 1997. V. 24. P. 1097–1100.

29. Кочетов Ю. А., Младенович Н., Хансен П. Локальный поиск с чере-
дующимися окрестностями // Дискрет. анализ и исслед. операций. 2003.
Т. 10, № 1. С. 11–43.

30. Diakova Z. S., Kochetov Yu. A. A double VNS heuristic for the facility
location and pricing problem // Electron. Notes Discrete Math. 2012. V. 39.
P. 29–34. DOI: 10.1016/j.endm.2012.10.005.

31. Кочетов Ю. А., Панин А. А., Плясунов А. В. Сравнение метаэври-
стик для решения двухуровневой задачи размещения предприятий и фаб-
ричного ценообразования // Дискрет. анализ и исслед. операций. 2015.
Т. 22, № 3. С. 36–54.

32. Hanjoul P., Hansen P., Peeters D., Thisse J.-F. Uncapacitated plant lo-
cation under alternative spatial price policies // Manage. Sci. 1990. V. 36, No. 1.
P. 41–57. DOI: 10.1287/mnsc.36.1.41.

33. Панин А. А., Пащенко М. Г., Плясунов А. В. Двухуровневые модели
конкурентного размещения производства и ценообразования // Автомати-
ка и телемеханика. 2014. № 4. С. 153–169.

Водян Максим Евгеньевич

Панин Артём Александрович

Плясунов Александр Владимирович

Статья поступила
29 ноября 2024 г.

После доработки —
2 февраля 2025 г.

Принята к публикации
22 июня 2025 г.



Maximizing the threshold stability 67

DISKRETNYI ANALIZ I ISSLEDOVANIE OPERATSII
/DISCRETE ANALYSIS AND OPERATIONS RESEARCH/

July–September 2025. Vol. 32, No. 3. P. 43–70

UDC 519.8 DOI: 10.33048/daio.2025.32.821

MAXIMIZING THE THRESHOLD STABILITY IN THE MODEL
OF FACILITY LOCATION AND THE MILL PRICING

M. E. Vodyan a , A. A. Panin b , and A. V. Plyasunov c

Sobolev Institute of Mathematics,
4 Acad. Koptyug Avenue, 630090 Novosibirsk, Russia

E-mail: a m.vodyan@g.nsu.ru,
b aapanin1988@gmail.com, c apljas@math.nsc.ru

Abstract. We study the threshold stability of the problem with the
median location of facilities and mill pricing. The problem of threshold
stability has the following differences from the original two-level for-
mulation: in the top-level problem, the deviation of consumer budgets
from expected values is maximized provided that the producer’s income
is not less than a given threshold. The problem statement considered
in this paper differs from those previously studied in that the pricing
problem is NP-hard in the strong sense when the location of facilities is
fixed.

A variable neighborhoods descent based algorithm (VND) to solve
the threshold stability problem is proposed. Numerical investigation of
the algorithm is carried out on known examples and randomly generated
data. The experiment shows that iteratively subtracting the threshold
stability radius from the consumer budgets, which is first implemented
in this paper, strongly reduces the running time of the algorithm. On the
examples with the optimum known, the algorithm was wrong on average
by 0.63%. In all the examples, the algorithm finds a solution on average
2.97% better than the Gurobi solver. Tab. 4, illustr. 2, bibliogr. 33.

Keywords: bilevel problem, threshold stability, radius of threshold sta-
bility, facility location, mill pricing, variable neighborhood descent.
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