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Аннотация. Исследуются бент-функции от 2n переменных, бли-
жайшие к заданной функции из класса Мэйорана — МакФарланда.
Переформулирован критерий расположения таких бент-функций,
и уточнён метод подсчёта их числа. Исследованы функции с числом
ближайших бент-функций, близким к его нижней и точной верхней
оценкам. Доказано существование бент-функций, у которых число
ближайших бент-функций имеет ту же асимптотику, что и ниж-
няя оценка. Приведены примеры функций из класса Мэйорана —
МакФарланда, для которых рассчитанное число ближайших бент-
функций близко к верхней оценке. Рассматривается также дости-
жимость нижней оценки, а именно, усилены известные необходимые
и достаточные условия. Показано, что нижняя оценка достигается
при n, равном степени простого числа p > 5, а также при неко-
торых других n. Приведена полная классификация функций от 6
переменных из класса Мэйорана — МакФарланда по числу ближай-
ших бент-функций. Табл. 1, библиогр. 40.

Ключевые слова: бент-функция, булева функция, аффинное под-
пространство, минимальное расстояние, класс Мэйорана — МакФар-
ланда.

Введение

Бент-функции — булевы функции от чётного числа переменных, об-
ладающие максимальной нелинейностью — впервые введены в рассмот-
рение в 1960-x гг. Их название появилось в работе Ротхауса [1], а в СССР
В. А. Елисеев и О. П. Степченков называли их минимальными [2]. Бент-
функции интересны своими приложениями в криптографии, алгебре,
теории кодирования, теории символьных последовательностей и т. д.
О них написаны обзоры и книги [2–7], а общую информацию о крип-
тографических свойствах булевых функций можно найти в [8–14].
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В данной работе рассматриваются метрические свойства бент-функ-
ций, а именно бент-функции, ближайшие относительно метрики Хэм-
минга к некоторой заданной бент-функции из класса Мэйорана — Мак-
Фарланда M2n от 2n переменных, который независимо ввели Мэйорана
и МакФарланд, аналогичную конструкцию предложил также В. А. Ели-
сеев (см. [2, 15]). Этот класс состоит из бент-функций вида

fπ,ϕ(x, y) = 〈x, π(y)〉 ⊕ ϕ(y), x, y ∈ Fn
2 ,

где π— подстановка на Fn
2 , ϕ : F

n
2 → F2, и наряду с классом PS [16] яв-

ляется одной из базовых конструкций бент-функций. Известно [17], что
все ближайшие к fπ,ϕ бент-функции находятся на расстоянии 2n и имеют
вид

fπ,ϕ ⊕ IndL, L ∈ LAn(fπ,ϕ), (1)

где LAn(fπ,ϕ)— множество всех аффинных подпространств L ⊆ F2n
2 раз-

мерности n, на которых fπ,ϕ аффинна. Конструкция (1), впервые опи-
санная в [16] и применимая к любой бент-функции, позволяет строить
бент-функции разных классов, поэтому она интересна и вне метриче-
ских свойств. На её основе построен класс D [18], выходящий за пре-
делы замыканий M2n и PS относительно EA-эквивалентности [18–20].
Свойства схожей с (1) конструкции для аффинных подпространств L
произвольной размерности рассматривались в [18, 21–24], а построение
бент-функций, не принадлежащих замыканию M2n, исследовалось так-
же в [25–27]. Таким образом, мощность LAn(fπ,ϕ) характеризует как раз-
мер минимальной окрестности fπ,ϕ (метрические свойства), так и число
бент-функций, порождаемых конструкцией (1).

Для |LAn(fπ,ϕ)| справедливы оценки

ℓ2n = 22n+1 − 2n 6 |LAn(fπ,ϕ)| 6 2n(21 + 1)(22 + 1) . . . (2n + 1) = U2n.
Верхняя оценка U2n верна для произвольной бент-функции и точна: она
достигается на всех квадратичных бент-функциях и только на них [29].
Нижняя оценка ℓ2n впервые представлена в [28], она тесно связана и с пе-
ресечениями классов: все учтённые в ней бент-функции лежат в M2n,
а все неучтённые — вне его [29]. Таким образом, её достижимость влечёт
отсутствие ближайших к fπ,ϕ бент-функций за пределамиM2n. Этот во-
прос исследуется в [30], где показано, что ℓ2n достижима при простых
n > 5. В то же время, для равенства |LAn(fπ,ϕ)| = ℓ2n необходимо,
чтобы π была APN-подстановкой [31]. Однако вопрос существования та-
ких подстановок при чётных n > 8 является открытым (the big APN
problem) [32].

В рамках данной работы мы предлагаем ещё одну формулировку кри-
терия для L ∈ LAn(fπ,ϕ) в конструкции (1), используя отличное от [30]
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представление аффинных подпространств Fn
2×Fn

2 , и демонстрируем под-
счёт |LAn(fπ,ϕ)| для некоторых fπ,ϕ.Например, все функции изM6 клас-
сифицированы по значению |LA3(fπ,ϕ)|. Результаты позволяют усилить
как необходимое, так и достаточное условия достижимости ℓ2n, а также
выделить бент-функции с близким к ℓ2n или U2n размером LAn(fπ,ϕ),
для которых при n→∞ имеет место одно из равенств

|LAn(fπ,ϕ)| = ℓ2n + o(ℓ2n), |LAn(fπ,ϕ)| =
1

3
U2n + o(U2n).

Поскольку любая бент-функция fπ,ϕ ∈ M2n «собрана» из 2n аффинных
ограничений на Fn

2 × {y} для y ∈ Fn
2 , функции с |LAn(fπ,ϕ)|, близким

к U2n (ℓ2n), можно считать наиболее «простыми» («сложными»).
Структура работы следующая. В разд. 1 приводятся необходимые

определения. В разд. 2 переформулирован критерий из [30] располо-
жения ближайших бент-функций к fπ,ϕ ∈ M2n в более удобном для
вычисления их числа виде (теорема 1). Отличие состоит в представ-
лении аффинных подпространств Fn

2 × Fn
2 , основанном на их пересе-

чении с Fn
2 × {0}n и проекции на {0}n × Fn

2 (см. п. 2.1), и использо-
вании специального линейного оператора GLπ (Gπ) (п. 2.2), через образ
и размер ядра которого выражается число ближайших к fπ,ϕ бент-функ-
ций (следствие 1, см. также теорему 3). Его удобство обусловлено воз-
можностью до определённой степени отделить свойства π от свойств ϕ.
Важно, что допускается представление fπ,ϕ как над Fn

2 × Fn
2 , так и над

F2n × F2n : во всех ключевых теоремах предполагается, что fπ,ϕ(x, y) =
〈x, π(y)〉n ⊕ ϕ(y), где 〈·, ·〉n — произвольная невырожденная симметрич-
ная билинейная форма на Fn

2 . Доказанная в п. 2.3 теорема 2 упрощает
работу с GLπ с помощью перехода к «естественной» билинейной форме,
определённой на FdimL

2 × FdimL
2 .

В разд. 3 найдены мощность ядра и образ оператора Gπ для некото-
рых подстановок π: аффинных, зависящих от не более чем трёх перемен-
ных (п. 3.1), а также для функции инверсии элементов F2n (п. 3.2). Все
полученные далее утверждения и теоремы демонстрируют применение
результатов из разд. 2 и 3 к конкретным бент-функциям fπ,ϕ.

В разд. 4 изучается достижимость нижней оценки ℓ2n числа ближай-
ших к fπ,ϕ бент-функций, для этого уточнена общая формула подсчёта
их числа (теорема 3). Данная теорема позволила получить как следствие
усиление результата [30] о необходимости для π быть APN-подстановкой
при |LAn(fπ,ϕ)| = ℓ2n: L и его образ π(L) не должны быть одновременно
аффинными подпространствами Fn

2 размерности 3 (следствие 2). Усиле-
но и достаточное условие достижимости ℓ2n из [30]: доказано, что оценка
гарантированно достигается не только при простых n > 5, но и при лю-
бых степенях таких простых чисел (теорема 4 и следствие 3).
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В разд. 5 теорема 3 применяется для подсчёта числа ближайших
к fπ,ϕ бент-функций, близкого к его нижней ℓ2n или верхней U2n оцен-
кам. В п. 5.1 доказано существование функции fπ,ϕ ∈ M2n, для которой
|LAn(fπ,ϕ)| < 22n+1+81 ·2n−82, причём неравенство превращается в ра-
венство ℓ2n+ o(ℓ2n) при n→∞ (теорема 5). Следствием является дости-
жимость оценки ℓ2n при некоторых других n (следствие 5). В качестве π
здесь используется функция инверсии элементов F2n .

В п. 5.2 для fϕ(x, y) = 〈x, y〉 ⊕ ϕ(y) приведена формула мощности
LAn(fϕ), использующая нетривиальные параметры ϕ (следствие 6). Да-
лее для ϕm(y1, . . . , yn) = y1 . . . ym, где 3 6 m 6 n дано явное выражение
для |LAn(fϕm)| (следствие 7, см. также утверждение 11 и замечание 4
о расширении класса функций ϕ). В случаях m = 3 и m = n получены
краткие формулы, по виду близкие к оценке U2n; из них следует, что при
n→∞ величина |LAn(fϕm)| имеет порядок o(U2n) и 1

3U2n + o(U2n) соот-
ветственно (следствие 8). Показано также, что бент-функция fτ , постро-
енная с помощью транспозиции τ : Fn

2 → Fn
2 и тождественно нулевой ϕ,

имеет |LAn(fτ )| = |LAn(fϕn)| (утверждение 12 и замечание 5). Выдви-
нута гипотеза, что это максимальное возможное число ближайших бент-
функций для неквадратичной бент-функции (гипотеза 1).

В разд. 6 показано, что из теоремы 3 следует классификация всех
f ∈ M6 по мощности LA3(f), которая в данном случае является полным
инвариантом относительно EA-эквивалентности (теорема 6).

1. Определения

1.1. Булевы функции. Пусть F2k — конечное поле, состоящее из 2k

элементов, и Fn
2 = {(x1, x2, . . . , xn) | x1, . . . , xn ∈ F2}— векторное про-

странство размерности n над полем F2, сложение в котором обозначено
через ⊕. Функция f : Fn

2 → F2 называется булевой функцией от n пере-
менных. Функция F : Fn

2 → Fm
2 называется векторной булевой функцией

и представляет собой упорядоченный набор m булевых функций от n пе-
ременных, каждая из которых называется координатной, а их нетриви-
альная линейная комбинация — компонентной функцией. Булевы функ-
ции будем рассматривать в том числе как частный случай векторных
булевых функций.

Любая векторная булева функция F : Fn
2 → Fm

2 единственным образом
представляется в виде полинома Жегалкина (алгебраической нормаль-
ной формы, АНФ):

F (x1, x2, . . . , xn) =
⊕

a∈Fn
2

gax
a1
1 x

a2
2 . . . xann , ga ∈ Fm

2 , 0
0 = 1. (2)

Степенью векторной булевой функции называется степень её полино-
ма Жегалкина. Функция F линейная, если F (x ⊕ y) = F (x) ⊕ F (y) для
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всех x, y ∈ Fn
2 . Прибавляя константу из Fm

2 к линейным функциям, полу-
чим множество аффинных функций (функций степени не более 1). Образ

множества S ⊆ Fn
2 будем обозначать через F (S) = {F (s) | s ∈ S}.

Производной F по направлению a ∈ Fn
2 называется векторная булева

функция DaF (x) = F (x) ⊕ F (x ⊕ a). Порядком дифференциальной рав-

номерности δ(F ) называется минимальное t, для которого при любых
параметрах a ∈ Fn

2 \ {0} и b ∈ Fm
2 уравнение F (x) ⊕ F (x ⊕ a) = b имеет

не более t решений. При n = m функции с δ(F ) = 2 называются APN-
функциями, а взаимно однозначные APN-функции — APN-подстановка-

ми.
Расстояние Хэмминга между булевыми функциями f, g : Fn

2 → F2
равно числу векторов, на которых их значения различаются. Вес Хэм-

минга wt(f) функции (вектора x ∈ Fn
2 ) — число векторов (координат)

со значением 1. Булева функция называется уравновешенной, если она
принимает значения 0 и 1 на одинаковом числе векторов.

Функции f и g EA-эквивалентны, если f(x) = g(A(x)) ⊕ h(x) для
всех x ∈ Fn

2 , где A : Fn
2 → Fn

2 — обратимое аффинное преобразование
и h : Fn

2 → F2 аффинна. Функция f при чётном n называется бент-функ-

цией, если она находится на максимальном расстоянии от множества всех
аффинных булевых функций. Множество всех бент-функций замкнуто
относительно EA-эквивалентности.

Обратим внимание, что большинство приводимых определений и фак-
тов можно найти в [8].

1.2. Подпространства и ограничения функций. Линейным под-

пространством Fn
2 называется непустое подмножество L ⊆ Fn

2 такое,
что для любых x, y ∈ L выполнено x ⊕ y ∈ L. Для a ∈ Fn

2 множество
U = a⊕L = {a⊕x | x ∈ L} называется аффинным подпространством Fn

2 .
Положим [U ] = L = a⊕ U. Размерность аффинного подпространства U
полагаем равной dimU = dim[U ]. Множества всех линейных и аффин-
ных подпространств Fn

2 размерности k обозначим через Skn и ASkn соот-
ветственно.

Ограничением функции F : Fn
2 → Fm

2 на множество S ⊆ Fn
2 называется

F |S : S → Fm
2 такая, что F |S(y) = F (y) для всех y ∈ S.

Пусть U и V — аффинные подпространства Fn
2 и Fm

2 соответственно.
Функция A : U → V называется аффинной, если A = A′|U для некоторой
аффинной функции A′ : Fn

2 → Fm
2 . Через [A] обозначим любую линей-

ную функцию вида Fn
2 → Fm

2 такую, что A = [A]|U ⊕ const. Например,
подходящей является [A] = A′ ⊕A′(0). Введём следующие обозначения:
• AV

U = {f : U → V | f аффинна}— множество всех аффинных функ-
ций из U в V ;

• AV
n = AV

Fn
2

и Ak
U = AFk

2
U ; в булевом случае An = A1

n и AU = A1
U .
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Введём в рассмотрение также следующие фактор-пространства.
• ‹FU = FU/AU , где FU = {f : U → F2}, Fn = FFn

2
. Соответствующее

отношение эквивалентности обозначим через ≃, так что f ≃ g тогда
и только тогда, когда f ⊕ g ∈ AU , где f, g ∈ FU .

• An
U/AV

U , где V ⊆ Fn
2 — линейное подпространство. Соответствующее

отношение эквивалентности обозначим через
V
=, так что F

V
= G тогда

и только тогда, когда F ⊕G ∈ AV
U , где F,G ∈ An

U
С целью упрощения записи будем считать, что для f ∈ FU также

имеет место f ∈ ‹FU (аналогично F ∈ An
U и F ∈ An

U/AV
U ), а для равенства

в фактор-пространстве используем символ эквивалентности.
Характеристическую функцию множества S обозначим через IndS ,

где S может быть как подмножеством Fn
2 , так и ‹FU .

1.3. Алгебраическое представление булевых функций. Функ-
цию F : Fn

2 → Fn
2 можно также рассмотреть как функцию F : F2n → F2n ,

зафиксировав некоторый базис F2n над F2. Многие свойства, например,
алгебраическая степень, нахождение функций на определённом рассто-
янии, свойство быть бент-функцией и т. д., не зависят от выбора базиса.
Любую такую функцию F можно однозначно представить в виде поли-
нома над полем:

F (x) =

2n−1∑

i=0

δix
i, δ0, . . . , δ2n−1 ∈ F2n .

Степень функции, отличной от константы 0, можно найти по формуле

degF = max
i∈{0,...,2n−1} : δi 6=0

wt(i(2)),

где i(2) ∈ Fn
2 — вектор двоичной записи i. Таким образом, аффинными

являются функции следующего вида:

x 7→ α0x
20 + α1x

21 + · · · + αn−1x
2n−1

+ αn, где α0, . . . , αn ∈ F2n .

Булеву функцию можно представить как trn1 (F (x)), где

trn1 (x) = x2
0
+ x2

1
+ · · · + x2

n−1
, x ∈ F2n .

Это линейная функция, значения которой лежат в F2. Будем пользовать-
ся следующими связанными с ней свойствами:

trn1 (x
2) ≡ trn1 (x), xk·2

i ≡ xk≪i, i > 0, k ∈ {0, . . . , 2n − 1}, (3)

где k ≪ i— число, двоичная запись которого является циклическим
сдвигом двоичной записи k(2) на i позиций в сторону старших разрядов.
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1.4. Класс Мэйорана — МакФарланда. Класс Мэйорана — Мак-
Фарланда M2n от 2n переменных состоит из функций вида

f(x, y) = 〈x, π(y)〉n ⊕ ϕ(y), x, y ∈ Fn
2 ,

где π— подстановка на Fn
2 и ϕ : Fn

2 → F2. Все они являются бент-функци-
ями. Здесь используем 〈·, ·〉n, поскольку рассматриваем как «обычные»
функции вида Fn

2 × Fn
2 → F2, для которых

〈x, y〉n = 〈x, y〉 = x1y1 ⊕ · · · ⊕ xnyn, x, y ∈ Fn
2 ,

так и функции над полем вида F2n × F2n → F2, для которых

〈x, y〉n = trn1 (xy), x, y ∈ F2n ,

т. е. в последнем случае рассматриваем Fn
2 как F2n . Все полученные в ра-

боте результаты справедливы, если в качестве 〈·, ·〉n взять любую сим-
метричную невырожденную билинейную форму над Fn

2 (F2n), которая
линейна по обоим аргументам, её значение не меняется при перестанов-
ке аргументов и 〈a, x〉n ≡ 0 только при a = 0 ∈ Fn

2 [33].
Ортогональное пространство к линейному подпространству L ⊆ Fn

2

определяется относительно используемой билинейной формы:

L⊥ = {y ∈ Fn
2 | 〈x, y〉n = 0 для всех x ∈ L} ⊆ Fn

2 .

Отметим, что dimL⊥ = n− dimL.

1.5. Бент-функции на расстоянии 2n и M2n. Минимальное рас-
стояние между двумя различными бент-функциями от 2n переменных
равно 2n [17]. Критерий такого расположения даёт

Утверждение 1 [17]. Пусть f ∈ F2n — бент-функция и U ⊂ F2n
2 ,

|U | = 2n. Тогда f⊕IndU является бент-функцией, если и только если U —

аффинное подпространство F2n
2 и f |U аффинная.

Для любой бент-функции f ∈ M2n существуют бент-функции на рас-
стоянии 2n от f, которые будем называть ближайшими. В настоящей
работе большое внимание уделяется известной [28] нижней оценке числа
таких бент-функций, которая уточнена в [29].

Утверждение 2 [28, 29]. Число ближайших к f ∈ M2n бент-функций

не меньше ℓ2n = 22n+1−2n, при этом в точности ℓ2n из них принадлежат

классу M2n.

Известно [30], что нижняя оценка ℓ2n достижима при простых n > 5.
Для произвольных функций π : Fn

2 → Fn
2 , подобной используемым при по-

строении класса M2n подстановкам, и F : Fn
2 → Fm

2 положим:
• Lk(π) =

{
U ∈ ASkn | π(U) ∈ ASkn

}
и L(π) = L0(π) ∪ · · · ∪ Ln(π);

• LAk(F ) =
{
U ∈ ASkn | F |U аффинна

}
.
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Например, построение всех ближайших к f ∈ M2n бент-функций с по-
мощью утверждения 1 эквивалентно нахождению множества LAn(f),
а число таких бент-функций равно |LAn(f)|. Далее также потребуется
следующее известное свойство инверсии элементов конечного поля.

Утверждение 3 [34]. Пусть π(x) = x2
n−2 для x ∈ F2n и 2 6 k 6 n.

Тогда если k ∤ n, то Lk(π) = ∅, иначе Lk(π) = {sF2k | s ∈ F2n \ {0}}, где

sF2k = {sx | x ∈ F2k}.
Заметную роль [30] в достижимости оценки ℓ2n играют APN-подста-

новки, каждую из которых эквивалентно можно определить как подста-
новку π на Fn

2 такую, что L2(π) = ∅ (см. [14]).

2. Описание ближайших к f ∈ M2n бент-функций

и подсчёт их числа

Переформулируем критерий расположения ближайших к f ∈ M2n

бент-функций, предложенный в [30], используя другое представление
элементов LAn(f) (п. 2.1), а также определив специальный линейный
оператор (п. 2.2), свойства которого позволяют найти |LAn(f)|. Для изу-
чения этих свойств можно использовать некоторые упрощения (п. 2.3).

2.1. Представление аффинных подпространств Fk
2 × Fm

2 . В ра-
боте [30] для представления подпространств использовались базисные
GJB-матрицы (приведённые ступенчатые матрицы). Однако не всегда
удобно работать с базисами, особенно если функции представлены в ал-
гебраическом виде. Рассмотрим схожее представление подпространств
Fk
2 × Fm

2 на языке множеств, задействующее меньшие подпространства
Fk
2 и Fm

2 (пересечение и проекцию), а также аффинные функции:

S(U, V,H) =
{
(x⊕H(y), y) ∈ Fk

2 × Fm
2 | x ∈ V, y ∈ U

}
, (4)

где
• U — аффинное подпространство Fm

2 ,
• V — линейное подпространство Fk

2,
• H ∈ Ak

U , т. е. функция H : U → Fk
2 аффинная.

Утверждение 4. Множество S(U, V,H) образует аффинное подпро-

странство в Fk
2 × Fm

2 размерности dimU + dimV. Более того,

1) любое аффинное подпространство S ⊆ Fk
2 × Fm

2 представимо как

S = S(U, V,H) с помощью проекции U и пересечения V :

U =
{
y ∈ Fm

2 | существует x ∈ Fk
2 такой, что (x, y) ∈ S

}
,

V × {0}m = [S] ∩
(
Fk
2 × {0}m

)
;

2) представление S = S(U, V,H) единственно при H ∈ Ak
U/AV

U .
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Доказательство. Нетрудно видеть, что S(U, V,H) ⊆ Fk
2×Fm

2 — аф-
финное подпространство и S(U, V,H) = (H(a), a) ⊕ [S(U, V,H)] для про-
извольно выбранного a ∈ U. При этом для каждого значения второй
части y ∈ U есть ровно |H(y) ⊕ V | различных значений первой части.
Итого |S(U, V,H)| = |U | · |V |, т. е. dimS(U, V,H) = dimU + dimV.

Представление. Если S = S(U, V,H) для некоторойH ∈ Ak
U , то под-

пространства U и V определяются однозначно по приведённым в условии
формулам в силу очевидных свойств конструкции. Рассмотрим произ-
вольное аффинное подпространство S ⊆ Fk

2 × Fm
2 . Множества U ⊆ Fm

2

и V ⊆ Fk
2 однозначно задаются теми же формулами по S и являются

аффинным и линейным подпространствами соответственно.
С целью подобрать подходящую аффинную функцию сначала найдём

такую функцию H : [U ] → Fk
2 , что [S] = S([U ], V,H). Пусть C(y) = [S] ∩(

Fk
2 × {y}

)
, y ∈ [U ]. Очевидно, что C(y) непусто и является смежным

классом V × {0}m = [S] ∩
(
Fk
2 × {0}m

)
. Более того, [S] =

⋃
y∈[U ]

C(y).

Пусть y1, . . . , yr ∈ Fm
2 образуют базис [U ], а s1, . . . , sr ∈ Fk

2 — любые
векторы такие, что (si, yi) ∈ C(yi) при i ∈ {1, . . . , r}. Положим H(yi) = si,
i ∈ {1, . . . , r}, а остальные значения H на [U ] определим из соотношения
линейности. После этого произвольным образом продолжим функцию H
до некоторой линейной функции [H] : Fm

2 → Fk
2 такой, что H = [H]|[U ].

Заметим, что C(y) = (H(y), y) ⊕ (V × {0}m). Действительно, если y =
yi1 ⊕ · · · ⊕ yit для 0 6 t 6 r, то

(H(y), y) = (H(yi1), yi1)⊕ · · · ⊕ (H(yit), yit) ∈ [S],

поскольку (H(yi1), yi1), . . . , (H(yit), yit) лежат в линейном [S]. Таким об-
разом, (H(y), y) ∈ C(y), т. е. C(y) = (H(y), y) ⊕ (V × {0}m). Это также
означает, что [S] = S([U ], V,H).

Далее, возьмём произвольно (b, a) ∈ S, т. е. S = (b, a)⊕ [S]. Получаем
S = S(U, V,H ′) для H ′(x) = [H](x) ⊕ [H](a) ⊕ b при x ∈ U = a⊕ [U ].

Единственность. Если S = S(U, V,H) = S(U ′, V ′,H ′), то по постро-
ению U ′ = U и V ′ = V. Далее, подпространства S(U, V,H) и S(U, V,H ′)
совпадают тогда и только тогда, когда для любого y ∈ U смежные
классы H(y) ⊕ V и H ′(y) ⊕ V совпадают. Это эквивалентно тому, что
H(y)⊕H ′(y) ∈ V, y ∈ U, т. е. H ⊕H ′ — аффинная функция вида U → V,

откуда H
V
= H ′. Утверждение 4 доказано.

Замечание 1. Функции множества AR
U являются представителями

классов эквивалентности из Ak
U/AV

U , где R ⊆ Fk
2 — произвольное линей-

ное подпространство размерности k − dimV такое, что R ∩ V = {0}.
Действительно, в этом случае Fk

2 раскладывается в прямую сумму под-
пространств V и R, а равенство R ∩ V = {0} обеспечивает попарную
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неэквивалентность представителей. Таким образом, любую аффинную
функцию H : U → Fk

2 можно представить в виде суммы функций из мно-
жеств AR

U и AV
U . Такое линейное подпространство R можно легко постро-

ить, например зная информационные координаты V [35].

Замечание 2. Линейное подпространство Fk
2×Fm

2 также может быть
представлено конструкцией S(U, V,H). Для этого достаточно применить
линейные подпространство U и функцию H.

Далее в основном будем рассматривать пространство Fn
2 × Fn

2 , т. е.
k = m = n, поскольку именно на нём задаются бент-функции из класса
Мэйорана —МакФарланда M2n.

2.2. Бент-функции, ближайшие к f ∈ M2n. Рассмотрим функ-
цию π : Fn

2 → Fn
2 и подпространство U ∈ ASkn такие, что π(U) ∈ ASkn;

положим V = [π(U)]⊥ ∈ Sn−k
n . Линейный оператор GUπ : An

U/AV
U → ‹FU

определим следующим образом:

GUπ (H) : x 7→ 〈H(x), π(x)〉n, x ∈ U. (5)

Для удобства обозначим отношение V
= на An

U/AV
U через π

= . Заметим, что
при U = Fn

2 не требуется использовать фактор-пространство входных

аргументов, в этом случае будем обозначать GF
n
2

π через Gπ : An
n → ‹Fn.

Утверждение 5. Линейный оператор GUπ определён корректно.

Доказательство. Пусть H,H ′ : U → Fn
2 аффинные и H

π
= H ′, т. е.

H ′ = H ⊕∆, где ∆: U → [π(U)]⊥ аффинная. Тогда

〈H ′(x), π(x)〉n =

= 〈H(x) ⊕∆(x), π(x)〉n = 〈H(x), π(x)〉n ⊕ 〈∆(x), π(x)〉n =

= 〈H(x), π(x)〉n ⊕ 〈∆(x), π(a)〉n ⊕ 〈∆(x), π(a) ⊕ π(x)〉n,
где a ∈ U. Тем самым π(a) ⊕ π(x) ∈ [π(U)], а в силу ∆(x) ∈ [π(U)]⊥

получаем
〈∆(x), π(a)⊕ π(x)〉n ≡ 0.

Поскольку π(a) не зависит от x, а ∆ аффинная, функция 〈∆(x), π(a)〉n
также аффинная. Следовательно, H π

= H ′ влечёт

GUπ (H) = 〈H(x), π(x)〉n ≃ 〈H ′(x), π(x)〉n = GUπ (H ′).

Линейность оператора очевидна. Утверждение 5 доказано.

Используя ядро Ker GUπ =
{
H ∈ An

U/AV
U | GUπ (H) ≃ 0

}
и образ

Im GUπ = GUπ
(
An

U/AV
U

)
оператора GUπ , переформулируем критерий из [30].

Заметим, что это можно сделать ещё одним схожим способом [35].
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Теорема 1. Пусть f(x, y) = 〈x, π(y)〉n⊕ϕ(y) ∈ M2n и L ⊆ F2n
2 . Тогда

f ⊕ IndL — ближайшая бент-функция к f, если и только если

L = S(U, [π(U)]⊥,H ⊕H0),

где U ∈ L(π), H ∈ Ker GUπ и GUπ (H0) ≃ ϕ|U . Произвольная пара U ∈ L(π)
и H ⊕H0 ∈ An

U/A
[π(U)]⊥

U однозначно определяет подходящее L.

Доказательство. Заметим, что dimL = dimU + dim[π(U)]⊥ = n,
поскольку U ⊆ Fn

2 . В силу утверждения 1 достаточно проанализировать
аффинность функции f на подпространстве L ∈ ASn2n, которое в общем
случае для подходящих подпространств V, U и функции H ′ имеет вид

L = S(U, V,H ′) = {(x⊕H ′(y), y) | x ∈ V, y ∈ U}.

Для произвольных x ∈ V, y ∈ U имеем

f |L(x, y) = 〈x⊕H ′(y), π(y)〉n ⊕ ϕ(y) =
= 〈x, π(y)〉n ⊕ 〈H ′(y), π(y)〉n ⊕ ϕ(y). (6)

С одной стороны, если подпространство U и функции H, H0 выбраны,
как указано в условии теоремы, а V = [π(U)]⊥ и H ′ = H ⊕ H0, то при
помощи (6) нетрудно проверить, что f аффинна на L.

С другой стороны, если f |L аффинна, то из (6) при a ∈ V следует,
что

D(a,0)f |L(x, y) = 〈a, π(y)〉 ≡ const,

Зафиксируем произвольный u ∈ U и рассмотрим π′(y) = π(y) ⊕ π(u).
После подстановки получаем

D(a,0)f |L(x, y) = 〈a, π′(y)〉 ⊕ 〈a, π(u)〉 ≡ const,

откуда 〈a, π′(y)〉 ≡ const. При этом π′(u) = 0 и 〈a, π′(u)〉 = 0, так что
〈a, π′(y)〉 ≡ 0. Из произвольности a ∈ V следует, что π′(U) ⊆ V ⊥. Однако
по утверждению 4 выполняется dimU = n − dimV = dimV ⊥, значит,
π′(U) = V ⊥ и π(U) = π(u) ⊕ V ⊥. Другими словами, имеем U ∈ L(π)
и V = [π(U)]⊥.

В этом случае согласно (6) аффинность f |L сводится к аффинности
функции 〈H ′(y), π(y)〉n ⊕ ϕ(y). В свою очередь, это можно записать как
GUπ (H ′) ≃ ϕ|U , где ϕ|U рассматривается уже как функция из ‹FU . Так как
оператор GUπ линейный, последнее эквивалентно тому, что H ′ = H ⊕H0,
где H ∈ Ker GUπ и GUπ (H0) ≃ ϕ|U . Осталось заметить, что согласно утвер-
ждению 4 представление L единственно при выборе H ′ ∈ An

U/AV
U . Тео-

рема 1 доказана.
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Из доказанного критерия и линейности GUπ напрямую вытекает след-
ствие о числе ближайших к f ∈ M2n бент-функций, которое согласно
утверждению 1 равно |LAn(f)|.

Следствие 1. Если f(x, y) = 〈x, π(y)〉n ⊕ ϕ(y) ∈ M2n, то

|LAn(f)| =
∑

L∈L(π)

IndIm GL
π
(ϕ|L) ·

∣∣Ker GLπ
∣∣.

Далее докажем дополнительные свойства оператора GUπ , а в разд. 4–6
продемонстрируем удобство формулы из следствия 1, которую уточним
в теореме 3. Заметим, что свойства чисел |L2(π)| и |L(π)| исследовались
в работах [36–38].

2.3. Свойства GUπ и переход к Gπ′ . Поиск ядра и образа GUπ пред-
ставляется непростой задачей из-за использования ограничений функций
на U ∈ ASkn. Например, нужно следить за однозначностью представ-
ления функций. Однако, мы покажем, что можно обойти ограничения
функций, рассматривая свойства оператора Gπ′ для некоторой подста-
новки π′ : Fk

2 → Fk
2 .

Теорема 2. Пусть функция π : Fn
2 → Fn

2 и подпространство U ∈ ASkn
таковы, что π(U) ∈ ASkn, а также

• функция π′ : Fk
2 → Fk

2 определена равенством π′ = B ◦ π ◦ A, где

A : Fk
2 → U и B : π(U)→ Fk

2 обратимы и аффинны;

• GUπ и Gπ′ определены относительно 〈·, ·〉n и 〈·, ·〉k соответственно;

• функция [B]∗ : Fk
2 → Fn

2 сопряжённая к [B], т. е.

〈[B]∗(x), y〉n = 〈x, [B](y)〉k, x ∈ Fk
2, y ∈ Fn

2 .

Тогда

Ker GUπ = [B]∗ ◦Ker Gπ′ ◦ A−1 = {[B]∗ ◦H ◦A−1 | H ∈ Ker Gπ′},
Im GUπ = Im Gπ′ ◦A−1 = {ϕ ◦ A−1 | ϕ ∈ Im Gπ′},

при этом
∣∣Ker GUπ

∣∣ =
∣∣Ker Gπ′

∣∣ и
∣∣Im GUπ

∣∣ =
∣∣Im Gπ′

∣∣.

Доказательство. Пусть V = [B]∗
(
Fk
2

)
— линейное подпространство

в Fn
2 , т. е. [B]∗ : Fk

2 → V. Докажем от противного, что V ∩ [π(U)]⊥ = {0}.
Пусть, напротив, [B]∗(a) ∈ [π(U)]⊥ для некоторого a ∈ Fk

2 \ {0}. Выберем
u ∈ π(U); для любого y ∈ [π(U)] имеем

〈a, [B](u⊕ y)〉k = 〈[B]∗(a), u⊕ y〉n =

= 〈[B]∗(a), u〉n ⊕ 〈[B]∗(a), y〉n = 〈[B]∗(a), u〉n.
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Заметим, что [B]|π(U) = B ⊕ const. В силу обратимости B получаем
[B](π(U)) = B(π(U)) ⊕ const = Fk

2 ⊕ const = Fk
2. Таким образом, для

любого x ∈ Fk
2

〈a, x〉k = 〈[B]∗(a), u〉n,
что противоречит невырожденности формы 〈·, ·〉k, поскольку a 6= 0.

Докажем, что dimV = k, т. е. обратимость [B]∗. Действительно, если
[B]∗(x1) = [B]∗(x2) при x1, x2 ∈ Fk

2 и x1 6= x2, то из равенств

〈[B]∗(x1), y〉n = 〈x1, [B](y)〉k, 〈[B]∗(x2), y〉n = 〈x2, [B](y)〉k
вытекает, что для любого y ∈ Fn

2

〈x1 ⊕ x2, [B](y)〉k = 0.

Это противоречит невырожденности формы 〈·, ·〉k, поскольку x1⊕x2 6= 0
и [B](π(U)) = Fk

2. Тем самым функция [B]∗ : Fk
2 → V обратима.

Обратимость A и [B]∗ позволяет любую функцию H ′ ∈ AV
U предста-

вить в виде H ′ = [B]∗◦H◦A−1 для некоторой H ∈ Ak
k. В силу доказанных

свойств V и замечания 1 именно такие функции можно рассматривать
в качестве попарно неэквивалентных представителей фактор-простран-

ства An
U/A

[π(U)]⊥

U .

Осталось заметить, что для функции ϕ = Gπ′(H) и любого x ∈ Fk
2

по построению справедливы равенства

ϕ(x) = 〈H(x), B(π(A(x)))〉k ≃ 〈H(x), [B](π(A(x)))〉k =

= 〈[B]∗(H(x)), π(A(x))〉n = 〈[B]∗(H(A−1(y)))), π(y)〉n = ϕ′(y),

где y = A(x) ∈ U. Поскольку A
(
Fk
2

)
= U, функция ϕ′(y) = ϕ(A−1(y))

определена на всём U и ϕ′ = GUπ (H ′). При этом ϕ′ π
= 0 тогда и только

тогда, когда ϕ ≃ 0, что означает эквивалентность условий H ∈ Ker Gπ′

и H ′ ∈ Ker GUπ . Теорема 2 доказана.

Таким образом, теорема 2 позволяет использовать естественную били-
нейную форму, не ограничивая её область определения. Например, мож-
но работать с trk1(·) над F2k вместо сужения trn1 (·) на U ∈ ASkn. Более того,
можно переходить к другой билинейной форме, не меняя начального U.
Полезными также являются следующие свойства.

Утверждение 6. Пусть функции π : Fn
2 → Fn

2 и B ∈ An
n обратимы.

Тогда Im GUπ = Im GUB◦π для любого подпространства U ∈ L(π).
Доказательство прямо следует из теоремы 2.

Утверждение 7. Пусть π : Fn
2 → Fn

2 обратима, ϕ ∈ Fn, L, U ∈ L(π)
и L ⊆ U. Тогда если ϕ|U ∈ Im GUπ , то ϕ|L ∈ Im GLπ .
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Доказательство. Условие ϕ|U ∈ Im GUπ означает, что существует
функция H ∈ An

U такая, что GUπ (H) ≃ ϕ|U , т. е. GUπ (H) = ϕ|U ⊕ h, где
h ∈ AU . Рассмотрим сужение H|L. Очевидно, что оно также будет аф-
финным, т. е. H|L ∈ An

L. Тогда для соответствующего фактор-простран-
ства GLπ (H|L) = ϕ|L ⊕ h|L, но h|L также аффинна, т. е. GLπ (H|L) ≃ ϕ|L.
Утверждение 7 доказано.

Замечание 3. Если для f(x, y) = 〈x, π(y)〉n ⊕ ϕ(y) ∈ M2n справед-
ливо ϕ ∈ Im Gπ, то ϕ|U ∈ Im GUπ для любого U ∈ L(π), что упрощает
формулу из следствия 1. Вместе с тем, это означает EA-эквивалетность
бент-функций f и f ′(x′, y′) = 〈x′, π(y′)〉n: достаточно сделать замену
x′ = x⊕H(y) и y′ = y для Gπ(H) ≃ ϕ, и получим f ′ с точностью до аф-
финной части.

3. Ядро и образ Gπ для некоторых π

Найдём ядро (или мощность ядра) и образ оператора Gπ для неко-
торых функций π. Остановимся на аффинных функциях и функциях
от малого числа переменных в представлении над Fn

2 , а также функции
инверсии элементов конечного поля, продемонстрировав алгебраический
подход.

3.1. Аффинные подстановки и подстановки от 3 переменных.

Свойства оператора Gπ несложно определить для аффинных подстано-
вок π ∈ An

n. Заметим, что при n ∈ {1, 2} все подстановки на Fn
2 аффинны.

При n = 1 это очевидно, а при n = 2 достаточно вспомнить, что deg π < n
для любой подстановки π : Fn

2 → Fn
2 (вообще говоря, при n > 2; см., на-

пример, [8]).
Рассматривая подстановки на Fn

2 , удобно пользоваться матричным
представлением для функции H ∈ An

n: H(x) = xA⊕ a, где A— невырож-
денная двоичная матрица порядка n и a ∈ Fn

2 , при этом

Gπ(H) : x 7→ 〈xA⊕ a, π(x)〉, |Ker Gπ| · |Im Gπ| = 2n
2+n. (7)

Утверждение 8. Пусть π : Fn
2 → Fn

2 — взаимно однозначная аффин-

ная функция. Тогда

Im Gπ = {ϕ ∈ ‹Fn | degϕ 6 2}, |Ker Gπ| = 2
n(n+3)

2 .

Доказательство. 1. В силу утверждения 6 можно считать без огра-
ничения общности, что π— тождественное отображение, поэтому образ
аффинной функции H ∈ An

n под действием оператора Gπ представляет
собой булеву функцию 〈xA⊕ a, x〉 ∈ ‹Fn, где A— невырожденная двоич-
ная матрица порядка n и a ∈ Fn

2 . Ясно, что так можно получить лю-
бую квадратичную функцию, при этом степень получившейся функции
не может быть больше 2.
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2. Имеем |Ker Gπ| = 2n
2+n−dim Im Gπ = 2n

2+n−n(n−1)/2 = 2
n(n+3)

2 в си-
лу (7). Утверждение 8 доказано.

Перейдём к произвольным подстановкам π : F3
2 → F3

2.

Утверждение 9. Пусть π : F3
2 → F3

2 — взаимно однозначная неаф-

финная функция. Тогда Im Gπ = ‹F3 и |Ker Gπ| = 256.

Доказательство. 1. В силу того, что π взаимно однозначна и неаф-
финна, deg π = 2. Таким образом, её полином Жегалкина можно пред-
ставить в следующем виде:

π(x1, x2, x3) =



Q1

1

Q1
2

Q1
3



⊤

x2x3 +



Q2

1

Q2
2

Q2
3



⊤

x1x3 +



Q3

1

Q3
2

Q3
3



⊤

x1x2 + xB + b,

где Qi
j ∈ F2, i, j ∈ {1, 2, 3}, B — двоичная матрица порядка 3 и b ∈ F3

2.
Поскольку degπ = 2, существует вектор коэффициентов

q = (q1, q2, q3) ∈
{(
Q1

1, Q
2
1, Q

3
1

)
,
(
Q1

2, Q
2
2, Q

3
2

)
,
(
Q1

3, Q
2
3, Q

3
3

)}
,

с весом Хэмминга wt(q) 6= 0, которому соответствует координатная функ-
ция f функции π, т. е.

f(x1, x2, x3) = q1x2x3 ⊕ q2x1x3 ⊕ q3x1x2 ⊕ 〈a, x〉 ⊕ c,
где a ∈ F3

2 и c ∈ F2. Так как π обратима, все её компонентные функции
уравновешенные, включая f [8]. Далее будем считать, что в 〈xT ⊕ s, π(x)〉
функция xT ⊕ s ∈ A3

3 имеет ненулевую координатную функцию только
в координате, соответствующей f, т. е. 〈xT ⊕ s, π(x)〉 = h(x) · f(x), где
h ∈ A3.

Случай 1: wt(q) = 1. Без ограничения общности положим q3 = 1.
Заметим, что x1x2 ⊕ a1x1 ⊕ a2x2 = (x1 ⊕ a2)(x2 ⊕ a1) ⊕ a1a2. Поскольку
свободный член в полиноме Жегалкина f влияет только на аффинную
часть h(x) · f(x), можно его не рассматривать. После замены

y1 = x1 ⊕ a2, y2 = x2 ⊕ a1, y3 = x3

функция f принимает вид

f(x1, x2, x3) = y1y2 ⊕ a3y3,
при этом f уравновешенна, так что a3 = 1. Далее,

1 · f(x) = y1y2 ⊕ y3,
y1 · f(x) = y1y2 ⊕ y1y3,
y2 · f(x) = y1y2 ⊕ y2y3,
y3 · f(x) = y1y2y3 ⊕ y3,
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т. е. {y1y2, y1y3, y2y3, y1y2y3} ⊆ Im Gπ.Отсюда получаем {x1x2, x1x3, x2x3,
x1x2x3} ⊆ Im Gπ, так как все функции из этого множества выражаются
через функции y1, y2, y3 и их суммы (с точностью до аффинной части).
Тем самым Im Gπ = ‹F3.

Случай 2: wt(q) = 2. Без ограничения общности положим q1 = 0.
Сделав линейную замену

z1 = x1, z2 = x2 ⊕ x3, z3 = x3,

получим
f(x1, x2, x3) = z1z2 ⊕ a′1z1 ⊕ a′2z2 ⊕ a′3z3 ⊕ c′,

где a′ ∈ F3
2 и c′ ∈ F2. Далее действуя аналогично случаю 1 приходим

к тому, что {z1z2, z1z3, z2z3, z1z2z3} ⊆ Im Gπ. Вместе с тем

z1z3 = x1x3, z1z2 = x1x2 ⊕ x1x3,
z2z3 = x2x3 ⊕ x3, z1z2z3 = x1x2x3 ⊕ x1x3.

Следовательно, {x1x2, x1x3, x2x3, x1x2x3} ⊆ Im Gπ.
Случай 3: wt(q) = 3, т. е. q = (1, 1, 1). Здесь квадратичная часть f

равна функции голосования g(x1, x2, x3) = x1x2 ⊕ x1x3 ⊕ x2x3, при этом
g(x1 ⊕ 1, x2, x3) = g(x1, x2, x3)⊕ x2 ⊕ x3. Тем самым, сделав замену

y1 = x1 ⊕ s1, y2 = x2 ⊕ s2, y3 = x3 ⊕ s3
для подходящего s ∈ F3

2, получим f(x) = g(y) либо f(x) = g(y) ⊕ y3
(с точностью до константы). Однако wt(g(y) ⊕ y3) = 2, а сама g уравно-
вешенная. Таким образом, f(x) = g(y). Далее,

(y1 ⊕ y2 ⊕ y3) · f(x) = y1y2y3,

(y1 ⊕ 1) · f(x) = y2y3 ⊕ y1y2y3,
(y2 ⊕ 1) · f(x) = y1y3 ⊕ y1y2y3,
(y3 ⊕ 1) · f(x) = y1y2 ⊕ y1y2y3,

откуда вытекает, что {y1y2, y1y3, y2y3, y1y2y3} ⊆ Im Gπ и, следовательно,
{x1x2, x1x3, x2x3, x1x2x3} ⊆ Im Gπ.

2. Имеем |Ker Gπ| = 23
2+3−dim Im Gπ = 212−4 = 256. Утверждение 9

доказано.

3.2. Инверсия элемента конечного поля. Применив теорему 6
из [30], можно найти образ оператора Gσ при простом n > 5, где σ—
функция обращения элементов F2n . При этом заметим, что Im Gσ будет
таким при любом n.

Утверждение 10. Пусть σ(x) = x2
n−2 для x ∈ F2n . Тогда

Ker Gσ =
{
αx+ βx2 + γx2

n−1
+ γ2 | α, β, γ ∈ F2n , tr

n
1 (α) = 0

}
,
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Im Gσ =
{
trn1 (c2x

22−1 + · · ·+ cn−1x
2n−1−1) + cnx

2n−1 |
c2, . . . , cn−1 ∈ F2n , cn ∈ F2

}
,

при этом |Ker Gσ| = 23n−1 и |Im Gσ| = 2(n−1)2 .

Доказательство. Любая аффинная функция H : F2n → F2n пред-
ставима единственным образом в виде

H(x) = α0x
20 + α1x

21 + · · ·+ αn−1x
2n−1

+ αn, α0, . . . , αn ∈ F2n .

Рассмотрим Gσ:

trn1 (x
2n−2H(x)) = trn1 (α0x

2n−1 + α1x
21−1 + · · ·+ αn−1x

2n−1−1 + αnx
2n−2).

Согласно (3) имеем

trn1 (αnx
2n−2) = trn1

((
α2n−1

n x2
n−1−1

)2)
= trn1

(
α2n−1

n x2
n−1−1

)
,

trn1 (α0x
2n−1) = α20

0 x
(2n−1)≪0 + · · ·+ α2n−1

0 x(2
n−1)≪(n−1) = trn1 (α0)x

2n−1.

Слагаемое trn1 (α1x
21−1) линейно, поэтому элементами Im Gσ являются

функции вида

trn1 (α2x
22−1) + · · ·+ trn1 (αn−2x

2n−2−1) +

+ trn1
((
αn−1 + α2n−1

n

)
x2

n−1−1
)
+ trn1 (α0)x

2n−1. (8)

Для нахождения Ker Gσ требуется определить все α0, . . . , αn, для ко-
торых функция (8) аффинна. Раскрыв все trn1 с переменной и с помо-
щью (3) записав общий полином, получим x в степенях (2j − 1) ≪ i, где
j ∈ {2, . . . , n− 1} и i ∈ {0, . . . , n − 1}, причём

((2j − 1) ≪ i)(2) = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
j

) ≪ i.

Это означает, что все эти степени попарно различны и не равны 2n − 1,
причём их вес больше 1. Тогда единственный способ получить аффин-
ную функцию в (8) — приравнять все коэффициенты нулю, т. е. поло-
жить α2 = α3 = · · · = αn−2 = 0, αn−1 = α2n−1

n (отсюда α2
n−1 = αn)

и trn1 (α0) = 0. Таким образом, коэффициенты α1 и αn−1 можно выбрать
из F2n произвольным образом, для α0 подходит ровно половина элемен-
тов F2n в силу линейности trn1 , а αn = α2

n−1. Тем самым выражения для
ядра Ker Gσ и его мощности доказаны. Мощность образа, очевидно, на-
ходится по формуле |Im Gσ| = 2n

2+n−(3n−1) = 2(n−1)2 . Утверждение 10
доказано.
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4. Достижимость нижней оценки ℓ2n
числа ближайших бент-функций

В этом разделе усилим результаты [30] о достижимости нижней оцен-
ки ℓ2n (см. табл. 1 для n 6 10), а также уточним формулу из следствия 1.
Напомним, что при |LAn(f)| = ℓ2n все ближайшие к f ∈M2n бент-функ-
ции также лежат в классе M2n.

Таблица 1

Достижимость нижней оценки ℓ2n при n 6 10

2n Достижимость ℓ2n Комментарий

2 Достижима ℓ2 = U2 = 6

4 Не достижима См. [30] или теорему 3

6 Не достижима Теорема 6

8 Не достижима См. [30]

10 Достижима См. [30]

12 Достижима Эксп. данные для APN-подстановки из [39]

14 Достижима См. [30]

16 Неизвестно The big APN problem

18 Неизвестно Выполнимо ли условие следствия 2?

20 Неизвестно The big APN problem

4.1. Необходимое условие достижимости ℓ2n. В [30] доказано,
что для достижимости ℓ2n необходимо в построении f ∈ M2n исполь-
зовать APN-подстановку, т. е. подстановку π, для которой L2(π) = ∅.
Далее усилим это условие, уточнив формулу из следствия 1.

Теорема 3. Пусть f(x, y) = 〈x, π(y)〉n ⊕ ϕ(y) ∈M2n. Тогда

|LAn(f)| =
n∑

k=0

Sk, Sk =
∑

L∈Lk(π)

IndIm GL
π
(ϕ|L) ·

∣∣Ker GLπ
∣∣, 0 6 k 6 n,

и, в частности,

S0 + S1 = ℓ2n, S2 = 25 · |L2(π)|,
S3 = 28 · |L3(π) \ LA3(π)|+ 29 · |{L ∈ LA3(π) | degϕ|L 6 2}|.

Доказательство. По теореме 2 будем рассматривать подстановку
π′ : Fk

2 → Fk
2 и функцию ϕ′ ∈ ‹Fk вместо π и ϕ|L, где Im GLπ = Im Gπ′ ◦A−1

для обратимой A ∈ AL
k .

При k ∈ {0, 1, 2} подстановка π′ аффинна на любом подпростран-
стве L ∈ Lk(π). Согласно утверждению 8 имеем равенства Im Gπ′ = ‹Fk
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и
∣∣Ker Gπ′

∣∣ = 2k(k+3)/2, т. е. Im GLπ = ‹FL. Таким образом,

S0 + S1 = 2n · 20 + 2n · 2
n − 1

2
· 22 = ℓ2n,

S2 = |L2(π)| · 25.

Если k = 3 и π′ не аффинна, то Im Gπ′ = ‹F3 и |Ker Gπ′ | = 28 в силу
утверждения 9, а следовательно, соответствующая часть суммы S3 равна
|L3(π) \ LA3(π)| · 28.

Если k = 3 и подстановка π′ аффинна, то Im Gπ′ = {g ∈ ‹F3 | deg g 6 2}
и |Ker Gπ′ | = 29 из утверждения 8. При этом Im GLπ = Im Gπ′ ◦ A−1 =

{g ∈ ‹FL | deg g 6 2}, так как степень функции инвариантна относительно
обратимого аффинного преобразования A ∈ AL

3 . Тем самым оставшаяся
часть суммы S3 равна |{L ∈ LA3(π) | degϕ|L 6 2}|·29, что в совокупности
даёт искомое число. Теорема 3 доказана.

Сформулируем в виде следствия усиление необходимого условия.

Следствие 2. Пусть f(x, y) = 〈x, π(y)〉n ⊕ ϕ(y) ∈ M2n, при этом

L2(π) ∪ L3(π) 6= ∅. Тогда |LAn(f)| > ℓ2n.

Доказательство. Воспользуемся теоремой 3. Если L2(π) 6= ∅ или
L3(π) \ LA3(π) 6= ∅, то очевидно, что |LAn(f)| > ℓ2n. Вместе с тем, если
найдётся L ∈ LA3(π), то произвольное его аффинное подпространство
U ∈ AS2n принадлежит LA2(π) = L2(π), т. е. и в этом случае оценка
не достигается. Следствие 2 доказано.

Заметим, что описание подпространств из множества LAn(f), постро-
енных при помощи L2(π), можно найти в [35]. Там же доказано, что
|LAn(f)| > ℓ2n + 25 · |L2(π)|.

4.2. Достаточное условие достижимости ℓ2n. Покажем, как мож-
но построить f ∈ M2n c |LAn(f)| = ℓ2n. Определим следующее множе-
ство функций из F2m в F2:

Rm =
{
c0 + trm1 (c1y

21−1 + · · ·+ cm−1y
2m−1−1) + cmy

2m−1 |
c1, . . . , cm−1 ∈ F2m , c0, cm ∈ F2

}
,

Нетрудно видеть, что это все функции, эквивалентные (≃) функциям
из множества Im Gσ, приведённого в утверждении 10, поскольку мы до-
бавили произвольную аффинную часть

c0 + trm1 (c1x
21−1) = c0 + trm1 (c1x).
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Для ϕ : F2n → F2, m | n и s ∈ F2n определим функцию ϕm
s : F2m → F2

по правилу
ϕm
s : y 7→ ϕ(sy), y ∈ F2m,

т. е. ϕm
s построена по ϕ|sF2m

.

Теорема 4. Пусть n = pk, где p > 5 простое и k > 1. Для функции

fϕ(x, y) = trn1 (xy
2n−2) + ϕ(y) ∈ M2n равенство |LAn(fϕ)| = ℓ2n имеет

место тогда и только тогда, когда ϕp
s /∈ Rp для всех s ∈ F2n \ {0}.

Доказательство. Пусть σ : y 7→ y2
n−2, y ∈ Fn

2 . Согласно утвержде-
нию 3

Lpi(σ) = {sF2pi
| s ∈ F2n \ {0}}, i ∈ {1, . . . , k},

и Lm(σ) = ∅ при всех m ∈ {2, . . . , pk} \ {pi}ki=1. Воспользуемся теоре-
мой 3 для вычисления LAn(fϕ). Определим функцию As : F2pi

→ sF
2pi

по правилу As(x) = sx для x ∈ F
2pi
. Тогда

ϕ|sF
2p

i
= ϕpi

s ◦A−1
s , (9)

а в силу теоремы 2 и утверждения 10 имеем
[
Im G

sF
2p

i

σ

]
≃
= Rpi ◦A−1

s , (10)

где
[
Im G

sF
2p

i

σ

]
≃

— множество функций g : sF
2pi
→ F2, эквивалентных (≃)

функциям из Im G
sF

2p
i

σ .
Пусть ϕp

s ∈ Rp для некоторого s ∈ F2n \ {0}. Тогда в силу (9) и (10)

справедливо ϕ|sF
2p

i
∈ Im G

sF
2p

i

σ . Так как 2p
i

> 1, то |LAn(fϕ)| > ℓ2n
по теореме 3.

Пусть ϕp
s /∈ Rp для всех s ∈ F2n \ {0}. По теореме 3 неравенство

|LAn(fϕ)| > ℓ2n возможно только в случае существования s ∈ F2n \ {0}
и i ∈ {1, . . . , k} таких, что ϕ|sF

2p
i
∈ Im G

sF
2p

i

σ , но тогда и ϕ|sF2p
∈ Im GsF2p

σ

в силу утверждения 7, поскольку sF2p ⊆ sF
2pi

(F2p является подпо-
лем F

2pi
, так как p | pi). Отсюда в силу (9) и (10) получаем ϕp

s ∈ Rp;
противоречие. Теорема 4 доказана.

Функции ϕ, о которых идёт речь в теореме 4, нетрудно перечислить
конструктивно.

Следствие 3. Если m | n = pk, где p > 5 простое и k > 1, то суще-

ствует ровно

2 (22
m−1 − 2m

2−m+1)
2n−1
2m−1

функций ϕ : F2n → F2, для которых ϕm
s /∈ Rm при всех s ∈ F2n \ {0}.
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Доказательство. Заметим, что

F2n = s1F2m ∪ · · · ∪ stF2m

для подходящих s1, . . . , st ∈ F2n и t = 2n−1
2m−1 , причём различные siF2m

пересекаются только по нулевому элементу. Следовательно, функцию ϕ
можно «собрать» из функций ϕm

s1 , . . . , ϕ
m
st , единственным общим значе-

нием которых является значение в нуле.
Значение ϕ(0) ∈ {0, 1} зададим произвольно — для этого имеется два

варианта. Таким образом фиксируем

ϕm
s1(0) = · · · = ϕm

st(0) = ϕ(0).

Остальные значения функции ϕm
s1 , . . . , ϕ

m
st принимают независимо. Заме-

тим также, что h ∈ Rm равносильно h + 1 ∈ Rm, или, что то же самое,
h ∈ FF2m

\ Rm равносильно h + 1 ∈ FF2m
\ Rm. Тем самым в зависи-

мости от ϕ(0) в качестве подходящей функции ϕm
si можем выбрать одну

из половины FF2m
\ Rm, т. е. имеем

22
m−1 − 2m

2−m+1

вариантов, так как |Rm| = 2(m−1)2 · 2m+1 по утверждению 10. Посколь-
ку функции из Rm имеют алгебраическое представление и ограничения
касаются только представленных степеней, сделать это нетрудно. Оста-
лось заметить, что нужно задать ровно t таких функций. Следствие 3
доказано.

Равенство |LAn(fϕ)| = ℓ2n также может выполняться для некоторых
других составных n и аналогично заданной функции fϕ ∈ M2n (см. след-
ствие 5 в п. 5.1).

5. Число ближайших бент-функций, близкое к его оценкам

Здесь продемонстрируем другое применение формулы из теоремы 3
(следствия 1). Сосредоточимся на подстановках, размерность ядра и об-
раз которых найдены в разд. 3. Условно разделим их на две части: одни,
для которых число ближайших к f ∈ M2n бент-функций |LAn(f)| близ-
ко к нижней оценке ℓ2n, и другие, для которых это число близко к точной
верхней оценке

U2n = 2n(21 + 1)(22 + 1) . . . (2n + 1). (11)

Напомним, что верхняя оценка достигается на квадратичных бент-функ-
циях (в том числе изM2n) и только на них [29]. Минимальное значение
|LAn(f)| из полученных далее равно ℓ2n + o(ℓ2n) при n → ∞, а макси-
мальное — 1

3U2n + o(U2n) при n→∞.
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5.1. Число ближайших бент-функций, близкое к ℓ2n. Бент-
функцию f ∈ M2n будем строить с помощью инверсии элементов ко-
нечного поля F2n .

Следствие 4. Пусть f(x, y) = trn1 (xy
2n−2), где x, y ∈ F2n . Тогда

|LAn(f)| = 23n−1 + 22n+1 − 2n +
∑

1<k<n :
k |n

2n − 1

2k − 1
· 23k−1.

Доказательство. По теореме 3 для k ∈ {0, 1} имеем 22n+1 − 2n

бент-функций. Для 2 6 k 6 n по утверждению 3 нужно рассмотреть
только k | n, причём Lk(π) = {sF2k | s ∈ F2n \ {0}}. Нетрудно видеть,
что |Lk(σ)| = 2n−1

2k−1
для σ : x 7→ x2

n−2, x ∈ F2n . С помощью теоремы 2
для каждого из этих подпространств перейдём к функции обращения
в подполе F2k : положим σs = A ◦ π ◦ A : F2k → F2k , где A : x 7→ sx,

т. е. σs : x 7→ x2
n−2 = x2

k−2. Поскольку ϕ ≡ 0, её ограничение всегда
принадлежит Im Gσs

. Наконец, |Ker Gσs
| = 23k−1 по утверждению 10.

Следствие 4 доказано.

Число из следствия 4 заметно больше нижней оценки. Однако для
любого n существует бент-функция f ∈ M2n, для которой |LAn(f)| имеет
ту же асимптотику, что и ℓ2n.

Теорема 5. Существует функция f(x, y) = trn1 (xy
2n−2)+ϕ(y) ∈ M2n,

для которой |LAn(f)| < 22n+1 + 81 · 2n − 82, т. е. |LAn(f)| = ℓ2n + o(ℓ2n)
при n→∞.

Доказательство. Используя теорему 3, для функции ϕ : F2n → F2

найдём число бент-функций, ближайших к f(x, y) = trn1 (xσ(y)) + ϕ(y),
σ(y) = y2

n−2, и не учтённых в оценке ℓ2n. При этом усреднив его по мно-
жеству всех таких функций ϕ, получим

Mn = 2−2n
∑

ϕ : F2n→F2

n∑

k=2

∑

L∈Lk(σ)

IndIm GL
σ
(ϕ|L) ·

∣∣Ker GLσ
∣∣ =

= 2−2n
n∑

k=2

∑

L∈Lk(σ)

∣∣Ker GLσ
∣∣ ∑

ϕ : F2n→F2

IndIm GL
σ
(ϕ|L) =

= 2−2n
n∑

k=2

∑

L∈Lk(σ)

∣∣Ker GLσ
∣∣ ·
∣∣Im GLσ

∣∣ · 2k+1 · 22n−2k =

=

n∑

k=2

∑

L∈Lk(σ)

2k
2+k · 2k+1 · 2−2k =

n∑

k=2

|Lk(σ)| · 2(k+1)2−2k .
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Здесь
∑

ϕ

IndIm GL
σ
(ϕ|L) =

∣∣Im GLσ
∣∣ · 2k+1 · 22n−2k в силу того, что в образ

Im GLσ включены функции с точностью до аффинной части, а вне под-
пространства L функцию ϕ можно задать произвольным образом.

Далее воспользуемся утверждением 3:

Mn =
∑

k>2: k |n

2n − 1

2k − 1
2(k+1)2−2k = (2n − 1)

∑

k>2: k |n

2(k+1)2−2k

2k − 1
. (12)

Приведём значения Nk = 2(k+1)2−2k

2k−1
для малых k:

N2 =
32

3
, N3 =

256

7
, N4 =

512

15
,

N5 =
16

31
, N6 =

1

63 · 215 , N7 =
1

127 · 264 .

Оценим Mn сверху:

Mn < (2n − 1)

(
5∑

k=2

Nk +
∞∑

k=6

2(k+1)2−2k−k+1

)
< 82 (2n − 1). (13)

Действительно, вторая часть суммы не превосходит 2N6, так как оче-
видно, что Nk+1 < 1

2Nk при k > 6, при этом N2 + N3 + N4 + N5 =

10 + 2
3 + 36 + 4

7 + 34 + 2
15 + 16

31 < 82− 2N6.
Поскольку Mn — среднее значение по всем функциям ϕ, хотя бы для

одной из них усредняемое число не превосходит Mn, в противном случае
среднее значение было бы больше. Теорема 5 доказана.

Таким образом, при любом n можно найти бент-функцию f ∈ M2n,
для которой среди её ближайших бент-функций не более 82 (2n−1) лежат
вне M2n (см. утверждение 2). В некоторых случаях теорема 5 влечёт
достижимость ℓ2n.

Следствие 5. Пусть m— минимальный нетривиальный делитель n,
m > 6 и n 6 2m −m2 − m − 3. Тогда найдётся бент-функция f(x, y) =
trn1 (xy

2n−2) + ϕ(y) ∈M2n, для которой справедливо |LAn(f)| = ℓ2n.

Доказательство. Поскольку m > 6, в силу (12) и (13) справедливо

Mn < (2n − 1)
∞∑

k=m

2(k+1)2−2k−k+1 < 2n · 2 · 2(m+1)2−2m−m+1.

Тем самым при n 6 2m +m − (m + 1)2 − 2 = 2m −m2 −m − 3 получа-
ем Mn < 1. Однако Mn — среднее значение, поэтому усредняемое число
хотя бы для одной из функции ϕ не превосходит Mn и, следовательно,
равно 0. Следствие 5 доказано.
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Условию на n из следствия 5 удовлетворяют числа 11 · 13, 11 · 11 · 13,
11 · 17 и т. п., что дополняет результаты п. 4.2.

5.2. Число ближайших бент-функций, близкое к U2n. Для удоб-
ства в качестве подстановки π будем рассматривать тождественное отоб-
ражение, т. е. речь пойдёт о функциях вида f(x, y) = 〈x, y〉⊕ϕ(y) ∈ M2n.
Можно легко расширить этот подкласс без изменения |LAn(f)|.

Утверждение 11. Пусть бент-функции f, g ∈ M2n имеют вид

f(x, y) = 〈x, y〉 ⊕ ϕ(y), g(x, y) = 〈x, π(y)〉 ⊕ ψ(y),
подстановка π аффинна и deg(ϕ⊕ψ) 6 2. Тогда f и g имеют одинаковое

число ближайших к ним бент-функций.

Доказательство. По утверждению 8 в Im GLπ лежат все функции
h : L→ F2 степени не выше 2,

∣∣Ker GLπ
∣∣ зависит только от размерности L,

а любое L ∈ Skn принадлежит Lk(π), поэтому по формуле из теоремы 3
получаем равенство |LAn(f)| = |LAn(g)|. Утверждение 11 доказано.

Мощность LAn(f) можно вычислить через ограничения функции ϕ
на подпространства L ∈ ASkn, которые имеют степень не выше 2.

Следствие 6. Пусть f(x, y) = 〈x, y〉 ⊕ ϕ(y) ∈ M2n. Тогда

|LAn(f)| =
n∑

k=0

∣∣{L ∈ ASkn | degϕ|L 6 2
}∣∣ · 2

k(k+3)
2 .

Доказательство. По условию π : Fn
2 → Fn

2 — тождественное отоб-
ражение. Воспользуемся теоремой 2. Для этого рассмотрим обратимую
аффинную функцию A : Fk

2 → L и положим B = A−1, так что полу-
чим ϕ′ = ϕ|L ◦ A, а π′ = A−1 ◦ π|L ◦ A : Fk

2 → Fk
2 — также тождественное

отображение. По утверждению 8 имеем Im Gπ′ = {ϕ′ ∈ ‹Fk | degϕ′ 6 2}
и |Ker Gπ′ | = 2

k(k+3)
2 , но степени ϕ′ = ϕ|L◦A и ϕ|L совпадают, так как A—

невырожденное аффинное преобразование. Финальная формула получа-
ется из теоремы 3. Следствие 6 доказано.

Напрямую воспользоваться формулой из следствия 6 трудно, однако
это можно сделать для следующего узкого класса бент-функций.

Следствие 7. Пусть f(x, y) = 〈x, y〉 ⊕ y1y2 . . . ym ∈ M2n, 3 6 m 6 n.
Тогда

|LAn(f)| =

=

n∑

k=0

(
2n−k ·

∣∣Skn
∣∣−

t∗(k)∑

t=t∗(k)

∣∣Stn−m

∣∣ ·
∣∣Sk−t

m

∣∣ · 2(k−t+1)(n−m−t)

)
· 2

k(k+3)
2 =
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= U2n −
n∑

k=0

t∗(k)∑

t=t∗(k)

∣∣Stn−m

∣∣ ·
∣∣Sk−t

m

∣∣ · 2(k−t+1)(n−m−t) · 2
k(k+3)

2 ,

где t∗(k) = max{0, k −m}, t∗(k) = min{n−m, k − 3} для k ∈ {0, . . . , n}.
Доказательство. Чтобы применить формулу из следствия 6, для

каждого k ∈ {0, . . . , n} найдём число подпространств L ∈ ASkn, для кото-
рых degϕ|L 6 2 при ϕ(y) = y1 . . . ym. Подсчитаем число L, для которых
degϕ|L > 3, а затем вычтем его из 2n−k

∣∣Skn
∣∣— числа всех подпространств

размерности k.
Без ограничения общности конъюнкцию y1 . . . ym заменим конъюнк-

цией yn−m+1 . . . yn, являющейся характеристической функцией подпро-
странства Z = Fn−m

2 × {1}m ∈ ASn−m
n . Заметим, что ϕ|L(y) = 1, если

и только если y ∈ L ∩ Z = T, причём это пересечение либо пусто, ли-
бо принадлежит AStn для некоторого t ∈ {0, . . . , n − m}. Таким обра-
зом, функция ϕ|L характеристическая для T, а её степень равна k − t.
Значит, нам нужны подпространства T размерности t 6 k − 3, точнее
t 6 min{k − 3, n−m}.

Подсчитаем число L ∈ ASkn таких, что dimL ∩Z = t 6 k− 3. Нетруд-
но видеть, что оно равно числу подпространств [L] ∈ Skn, пересекающих-
ся с [Z] по подпространству размерности t, умноженному на 2n−m−t —
именно столькими способами можно выбрать аффинное подпростран-
ство пространства L с фиксированной линейной частью.

Воспользуемся представлением линейных подпространств из п. 2.1:
L = S(U, V,H) ⊆ Fn−m

2 × Fm
2 , где U ∈ Sk−r

m , V ∈ Srn−m и H ∈ An−m
U /AV

U
линейная (см. замечание 2). Согласно утверждению 4 имеем равенство
V ×{0}m = [L]∩ [Z], т. е. r = t. Таких V ровно

∣∣Stn−m

∣∣. Далее,
∣∣Sk−t

m

∣∣ спо-
собами можем выбрать подпространство U и 2(k−t)(n−m−t) способами —
одну из попарно неэквивалентных функций H (см. замечание 1), так что
в итоге получаем ∣∣Stn−m

∣∣ ·
∣∣Sk−t

m

∣∣ · 2(k−t)(n−m−t)

вариантов выбора [L]. Отсюда находим число способов выбрать L:

2n−m−t ·
∣∣Stn−m

∣∣ ·
∣∣Sk−t

m

∣∣ · 2(k−t)(n−m−t) =
∣∣Stn−m

∣∣ ·
∣∣Sk−t

m

∣∣ · 2(k−t+1)(n−m−t),

при этом t > k −m, поскольку dimU = dimL− dimV = k − t 6 m (см.
утверждение 4). Полученное выражение суммируем по t от max{0, k−m}
до min{k−3, n−m} и вычтем из |ASkn| = 2n−k

∣∣Skn
∣∣. В результате приходим

к первому равенству для |LAn(f)| из условия теоремы.
Осталось заметить, что

n∑

k=0

2n−k ·
∣∣Skn
∣∣ · 2

k(k+3)
2 = U2n. (14)
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Действительно, с одной стороны, по теореме 3 левая часть (14) равна
|LAn(g)| для квадратичной функции g(x, y) = 〈x, y〉 от 2n переменных.
С другой стороны, |LAn(g)| = U2n согласно [28]. Следствие 7 доказано.

Замечание 4. В условии следствия 7
1) вместо y1 . . . ym можно взять IndS для любого S ∈ ASn−m

n ;
2) при m = n и m = n − 1 формулы справедливы для бент-функ-

ций f(x, y) = 〈x, y〉 ⊕ ϕ(y) ∈ M2n таких, что wt(ϕ) = 1 и wt(ϕ) = 2
соответственно.

Формулы из следствия 7 весьма полезны, поскольку дают представ-
ление |LAn(f)| через гауссовы коэффициенты

∣∣Skn
∣∣ =

k−1∏

i=0

2n − 2i

2k − 2i
, 0 6 k 6 n.

Для m ∈ {3, n} можно получить ещё более простые выражения.

Следствие 8. Пусть бент-функции f3, fn ∈ M2n, n > 3, имеют вид

f3(x, y) = 〈x, y〉 ⊕ y1y2y3, fn(x, y) = 〈x, y〉 ⊕ y1y2 . . . yn.
Тогда

|LAn(f3)| = U2n − 24n−3(21 + 1)(22 + 1) . . . (2n−3 + 1),

|LAn(fn)| = (2n − 1)

n∏

k=2

(2k + 1) +
32

3
(22n−1 + 1)− 3 · 2n+2 − 3,

при этом |LAn(f3)| = o(U2n), |LAn(fn)| = 1
3U2n + o(U2n) при n→∞.

Доказательство. Легко видеть, что при 3 6 k 6 n

t∗(k)∑

t=t∗(k)

∣∣Stn−m

∣∣ ·
∣∣Sk−t

m

∣∣ · 2(k−t+1)(n−m−t) =

®∣∣Sk−3
n−3

∣∣ · 24(n−k) для m = 3,∣∣Skn
∣∣ для m = n,

а при 0 6 k 6 2 эта сумма равна нулю.

Случай 1: m = 3. В силу следствия 7

|LAn(f3)| = U2n −
n∑

k=3

∣∣Sk−3
n−3

∣∣ · 24(n−k) · 2
k(k+3)

2 .

Заменой индекса k → k + 3 сумма в правой части приводится к виду

n∑

k=3

∣∣Sk−3
n−3

∣∣ · 24(n−k) · 2
k(k+3)

2 =

n−3∑

k=0

∣∣Skn−3

∣∣24(n−k−3) · 2
(k+3)(k+6)

2 =
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=

n−3∑

k=0

∣∣Skn−3

∣∣ · 24(n−3)−4k+3(k+3) · 2
k(k+3)

2 = 23n
n−3∑

k=0

∣∣Skn
∣∣ · 2n−3−k · 2

k(k+3)
2

(14)
=

(14)
= 23n U2(n−3) = 23n · 2n−3(21 + 1)(22 + 1) . . . (2n−3 + 1),

откуда |LAn(f3)| = U2n − 23n U2(n−3) = o(U2n) при n→∞.
Случай 2: m = n. В силу следствия 7 имеем

|LAn(fn)| = 2n(21 + 1) . . . (2n + 1)−
n∑

k=0

∣∣Skn
∣∣ · 2

k(k+3)
2 +

2∑

k=0

∣∣Skn
∣∣ · 2

k(k+3)
2 ,

где последнее слагаемое равно

1 + (2n − 1) · 22 + (2n − 1)(2n − 2)

(22 − 1)(22 − 2)
· 25 =

32

3
(22n−1 + 1)− 3 · 2n+2 − 3.

Упростим второе слагаемое

P (n) =

n∑

k=0

∣∣Skn
∣∣ · 2

k(k+3)
2 .

Аналогично выводу равенства (14) в [28], применим очевидное свойство
∣∣Skn
∣∣ =

∣∣Skn−1

∣∣+ 2n−k
∣∣Sk−1

n−1

∣∣, 1 6 k 6 n,

где по определению
∣∣Snn−1

∣∣ = 0. Поскольку
∣∣S0n
∣∣ =

∣∣S0n−1

∣∣ = 1, получаем

P (n) =

n∑

k=0

∣∣Skn
∣∣ · 2

k(k+3)
2 =

=

n−1∑

k=0

∣∣Skn−1

∣∣ · 2
k(k+3)

2 +

n∑

k=1

2n−k ·
∣∣Sk−1

n−1

∣∣ · 2
k(k+3)

2 =

= {k → k + 1} = P (n− 1) +

n−1∑

k=0

2n−1−k ·
∣∣Skn−1

∣∣ · 2
(k+1)(k+4)

2 =

= P (n− 1) + 2n+1
n−1∑

k=0

∣∣Skn−1

∣∣ · 2k2+5k+4−2k−4
2 =

= P (n− 1) + 2n+1
n−1∑

k=0

∣∣Skn−1

∣∣ · 2
k(k+3)

2 = (1 + 2n+1)P (n− 1).

Таким образом, P (n) = (2n+1 + 1)P (n − 1) и P (0) = 1, откуда

P (n) = (22 + 1)(23 + 1) . . . (2n+1 + 1),

2n(21 + 1) . . . (2n + 1)− P (n) = (22 + 1) . . . (2n + 1)(3 · 2n − 2n+1 − 1).
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Суммируя найденные слагаемые, приходим к требуемой формуле для
|LAn(fn)|, из которой нетрудно видеть, что |LAn(fn)| = 1

3U2n + o(U2n)
при n→∞. Следствие 8 доказано.

Заметим, что |LAn(fn)| > |LAn(f3)| при n > 4, хотя в этом случае
deg f3 = 3 < deg fn = n, и вообще |LAn(f3)| = o(|LAn(fn)|) при n→∞.

Интересно, что имеется ещё одна неквадратичная бент-функция, для
которой ожидаемое число ближайших бент-функций велико, имеет их
столько же, сколько и fn.

Утверждение 12. Пусть fτ (x, y) = 〈x, τ(y)〉 ∈ M2n, где τ — транс-

позиция на Fn
2 , переставляющая векторы (1, . . . , 1, 0) и (1, . . . , 1, 1) друг

с другом. Тогда |LAn(fτ )| = |LAn(fn)|.
Доказательство. Нетрудно видеть, что

τ(y) = y ⊕ (0, . . . , 0, y1 . . . yn−1).

Действительно, если (y1, . . . , yn−1) 6= (1, . . . , 1), то τ(y) = y. Иначе полу-
чаем τ(1, . . . , 1, 0) = (1, . . . , 1, 0 ⊕ 1) и τ(1, . . . , 1, 1) = (1, . . . , 1, 1 ⊕ 1), что
соответствует определению τ. Следовательно,

fτ (x, y) = 〈x, y〉 ⊕ xn(y1 . . . yn−1) = x1y1 ⊕ · · · ⊕ xnyn ⊕ y1 . . . yn−1xn.

Таким образом, переставив переменные xn и yn, получим в точности fn
и |LAn(fτ )| = |LAn(fn)|. Утверждение 12 доказано.

Замечание 5. В условии утверждения 12 можно считать, что τ —
произвольная транспозиция на Fn

2 , поскольку все fτ EA-эквивалентны
друг другу и, следовательно, имеют одинаковые |LAn(fτ )|. Для доказа-
тельства достаточно привести транспозицию τ к указанной в утвержде-
нии при помощи композиции A ◦ τ ◦ B, где A,B : Fn

2 → Fn
2 — некоторые

обратимые аффинные преобразования. Также в условии утверждения 12
вместо транспозиции можно рассматривать саму приведённую компози-
цию для произвольных транспозиции τ и обратимых аффинных A,B.

Согласно следствиям 1, 8 и утверждению 12 функции fn и fτ дают
наиболее интуитивно очевидные способы построить бент-функции с мак-
симально возможной |LAn(f)| среди неквадратичных функций f(x, y) =
〈x, π(y)〉⊕ϕ(y) ∈M2n: либо выбираем тождественную (аффинную) под-
становку π и минимально отличающуюся от тождественно нулевой функ-
цию ϕ, либо, наоборот, выбираем тождественно нулевую ϕ и минималь-
но отличающуюся от тождественной (аффинной) π. Эти рассуждения,
а также принцип построения M2n, позволяют сделать предположение.

Гипотеза 1. Пусть f — бент-функция от 2n переменных и deg f > 3.
Тогда |LAn(f)| 6 |LAn(fn)|.
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6. Классификация бент-функций из M6

Теорема 3 (следствие 1) позволяет классифицировать f ∈ M6 на осно-
ве |LA3(f)|. Начнём с мощности L2(π) для подстановок π на F3

2. Обратим
также внимание, что возможные значения |Ln−1(π)| для подстановок π
на Fn

2 (без классификации π) были получены в работе [36].

Утверждение 13. Пусть π : F3
2 → F3

2 взаимно однозначна. Тогда

|L2(π)| =





0, если δ(π) = 2,

2, если δ(π) = 4,

6, если δ(π) = 8 и π 6∈ A3
3,

14, если π ∈ A3
3.

Других взаимно однозначных функций π нет.

Доказательство. 1. По одному из определений APN-подстановки π
выполнено L2(π) = ∅.

2. Пусть δ(π) = 4. Все L ∈ L2(π) являются гиперплоскостями в F3
2,

т. е. L ∈ L2(π) тогда и только тогда, когда его сдвиг F3
2 \ L ∈ L2(π).

Далее от противного: пусть есть различные L,U ∈ L2(π), не являю-
щиеся сдвигами друг друга. В этом случае |V = L ∩ U | = 2. Обозначим
V = {a, a ⊕ v}, a, v ∈ F3

2 и π(V ) = {π(a), π(a) ⊕ v′)}, v′ ∈ F3
2. Тогда

L \ V = {b, b ⊕ v} и U \ V = {c, c ⊕ v} для некоторых b, c ∈ F3
2, так

как L и U — аффинные подпространства F3
2 и сумма всех их элементов

должна быть равна 0. То же самое верно и для образов: π(L) \ π(V ) =
{b′, b′⊕ v′} и π(U) \π(V ) = {c′, c′⊕ v′}, b′, c′ ∈ F3

2. В результате уравнение
π(x)⊕π(x⊕v) = v′ имеет как минимум шесть решений a, a⊕v, b, b⊕v, c,
c⊕ v, а это противоречит тому, что δ(π) = 4. При этом δ(π) 6= 2, откуда
|L2(π)| > 0. Следовательно, L2(π) = {L, F3

2 \ L} для некоторого L.
3. Пусть δ(π) = 8 и π не аффинна, т. е. производная π по некоторому

ненулевому направлению является константой, или, другими словами,
подстановка π имеет непустую линейную структуру. Все такие функции
можно аффинными преобразованиями привести к следующей (см., на-
пример, [8]):

π′(x) = qx1x2 + sx3 + t = π(xB ⊕ b), x ∈ F3
2,

где q, s, t ∈ F3
2, q 6= 0, двоичная матрица B невырожденная и имеет поря-

док 3, b ∈ F3
2. Ясно, что |L2(π)| = |L2(π′)|, поэтому далее вместо π будем

рассматривать π′.
Очевидно, что L ∈ L2(π) тогда и только тогда, когда π|L аффинна.

Значит, в полиноме Жегалкина π|L нет квадратичного слагаемого x1x2.
Тем самым L2(π) состоит из всех таких L ∈ AS23, на которых функция
g(x) = x1x2 аффинна.
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Производное подпространство L ∈ AS23 можно задать уравнением
a1x1 ⊕ a2x2 ⊕ a3x3 = c, причём различным парам a ∈ F3

2, c ∈ F2 соот-
ветствуют различные подпространства. Нам подходят L, заданные урав-
нениями x1 = c, x2 = c и x1 ⊕ x2 = c. Действительно, если a3 = 1,
то L = {(x1, x2, a1x1 ⊕ a2x2 ⊕ c) ∈ F3

2 | x1, x2 ∈ F2} и g|L не аффинна.
Таким образом, L2(π) состоит из 3 · 2 = 6 элементов.

4. Очевидно, так как подстановка π аффинна на всех аффинных под-
пространствах размерности 2, которых в F3

2 имеется 7 · 2 = 14.

5. В силу взаимной однозначности функции π получаем deg π 6 2,
поэтому её производные π(x) ⊕ π(x ⊕ a) по всем направлениям a ∈ F3

2
аффинны. Тем самым число решений уравнений π(x) ⊕ π(x ⊕ a) = b
принадлежит множеству {0, 2, 4, 8}. Поскольку δ(π) > 2, рассмотрены
все возможные случаи. Утверждение 13 доказано.

Приведём классификацию функций f ∈ M6 относительно |LA3(f)|.

Теорема 6. Пусть f(x, y) = 〈x, π(y)〉 ⊕ ϕ(y) ∈M6. Тогда

|LA3(f)| =





376, если δ(π) = 2,

440, если δ(π) = 4,

568, если δ(π) = 8 и π 6∈ A3
3,

568, если π ∈ A3
3 и degϕ = 3,

1080 = U6, если π ∈ A3
3 и degϕ 6 2.

Доказательство. По теореме 3

|LA3(f)| = ℓ6 + 25 · |L2(π)| + 28 · |L3(π) \ LA3(π)|+
+ 29 · |{L ∈ LA3(π) | degϕ|L 6 2}|. (15)

Здесь ℓ6 = 120, а |L2(π)| найдена в утверждении 13. Далее, L3(π) =
{
F3
2

}
,

так как n = 3. Наконец, очевидно, что LA3(π) = L3(π), если π аффинна,
и LA3(π) = ∅ иначе. Подстановкой найденных чисел в формулу (15)
получаем требуемое равенство. Теорема 6 доказана.

Теорема 6 даёт также классификацию функций из M6 относительно
EA-эквивалентности (см., например, работу [40] о методах классифика-
ции булевых функций в общем случае). Действительно, число |LAn(f)|
бент-функций на расстоянии 2n от f является инвариантом функции
f ∈ M2n относительно EA-эквивалентности. При этом в [1] доказано,
что множество бент-функций от 6 переменных разбивается на 4 класса
EA-эквивалентности. Таким образом, эти 4 класса представлены в тео-
реме 6, и каждому из них соответствует своё значение |LA3(f)|.
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Заключение

Предложенный в работе подход к перечислению бент-функций, бли-
жайших к заданной функции из класса Мэйорана — МакФарландаM2n,
обладает следующими достоинствами.
• Обеспечивает возможность подсчёта их точного числа для ряда

функций с определёнными симметриями.
• Позволяет расширить известные необходимое и достаточное усло-

вия достижимости нижней оценки ℓ2n для их числа.
• На основе свойств класса M2n для функции степени 3 и выше вы-

двинута гипотеза, ограничивающая число ближайших к ней бент-функ-
ций величиной 1

3U2n + o(U2n).
Остаётся простор для дальнейших исследований, в ходе которых воз-

можно установить другие примечательные свойства этого класса бент-
функций (см., например, [35]).
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Abstract. Bent functions of 2n variables closest to a given bent func-
tion in the Maiorana–McFarland class are considered. The known crite-
rion for their construction is revised and the method of calculating their
number is refined. We investigate functions such that the number of clos-
est bent functions is approximate to its lower and sharp upper bounds.
The existence of bent functions whose number of closest bent functions
has the same asymptotics as the lower bound is proven. Examples of
functions in the Maiorana–McFarland class are given for which the cal-
culated number of closest bent functions is close to the upper bound.
Attainability of the lower bound is considered, and known necessary
and sufficient conditions are refined. We show that the lower bound
is attained for n equaled to a power of a prime p > 5, as well as for
some other n. A complete classification of functions of 6 variables in the
Maiorana–McFarland class using the number of closest bent functions
is obtained. Tab. 1, bibliogr. 40.

Keywords: bent function, Boolean function, affine subspace, minimum
distance, Maiorana–McFarland class.
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