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Аннотация. Рассматривается задача синтеза фазированной антен-
ной решётки, которая заключается в выборе фаз и амплитуд для
всех излучающих элементов, когда требуется, чтобы получаемая
диаграмма направленности по каждому рассматриваемому направ-
лению принадлежала заданному множеству. Установлено, что поиск
допустимого решения является NP-трудной в сильном смысле зада-
чей в случае, когда по каждому рассматриваемому направлению
допускается одно или два значения мощности излучения. Кроме то-
го, доказана NP-трудность поиска допустимого решения в задаче
синтеза частично заполненной антенной решётки, когда требуется,
чтобы получаемая диаграмма направленности по каждому рассмат-
риваемому направлению принадлежала заданному интервалу и ам-
плитуды всех излучателей были одинаковы. Библиогр. 19.

Ключевые слова: вычислительная сложность, антенная решётка,
сводимость, NP-полнота.

Введение

Фазированная антенная решётка (ФАР) представляет собой совокуп-
ность излучателей, подключённых к устройствам, обеспечивающим тре-
буемое распределение фаз и амплитуд на этих излучателях. ФАР широко
используются в диапазоне сверхвысоких частот для получения излуче-
ния с заданной диаграммой направленности (см., например, [1]). В диа-
пазоне высоких частот, который соответствует коротким волнам, такие
системы позволяют получить увеличение энергии канала связи или со-
кращение занимаемого пространства [2, 3].

Задача синтеза ФАР заключается в выборе фаз и амплитуд для всех
излучающих элементов, когда требуется, чтобы получаемая диаграмма
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направленности по каждому из рассматриваемых направлений принад-
лежала заданному множеству. В некоторых формулировках задачу син-
теза ФАР удаётся решить с использованием методов выпуклого програм-
мирования [4, 5] или методов линейной алгебры [6, 7]. В частности, в [8]
показано, что задачей выпуклого программирования является отыска-
ние возбуждений заданного набора произвольно расположенных источ-
ников таким образом, чтобы создать интенсивность дальнего поля, кото-
рая максимальна в заданном направлении и подчиняется произвольным
верхним границам в других направлениях. Однако, многие авторы вы-
нуждены использовать более трудоёмкие методы, разработанные для ре-
шения многоэкстремальных задач, такие как мультистарт градиентной
оптимизации [9, 10], метаэвристики [11, 12], методы, основанные на по-
луопределённой релаксации [13] и т. д.

В настоящей работе для двух вариантов задачи синтеза ФАР дока-
зывается NP-трудность в сильном смысле. Первый вариант соответству-
ет постановке из [13], но имеет специфические требования к диаграмме
направленности. Второй вариант предполагает синтез фаз в излучате-
лях частично заполненной решётки с более реалистичными требовани-
ями относительно диаграммы направленности. NP-трудность вытекает
из полученных в теоремах 1 и 2 свойств NP-полноты соответствующих
задач распознавания, сформулированных в разд. 1 и 2.

1. Задача синтеза фазированной антенной решётки

Рассмотрим ФАР, состоящую изN излучающих элементов, размещён-
ных в точках r1, . . . , rN ∈ R3. Для упрощения обозначений задача описа-
на в случае, когда диаграмма направленности параметризована только
значениями полярного угла θ в фиксированной азимутальной плоскости,
которая опущена в обозначениях. Обобщение на случай, когда диаграм-
ма направленности задаётся как по азимутальному, так и по полярному
угловому направлению, существенно не усложнит задачу.

Пусть каждый элемент k создаёт парциальное поле gk(θ) в направле-
нии θ, т. е. gk(θ)— напряжённость электромагнитного поля, создаваемого
в направлении θ на большом расстоянии (т. е. когда размеры ФАР пре-
небрежимо малы по сравнению с расстоянием до приёмника) при проте-
кании единичного тока через излучающий элемент k. Тогда на большом
расстоянии напряжённость поля f(θ), излучаемого всей ФАР в направ-
лении θ, имеет вид (см., например, [13] или подробнее в [14, § 1.13])

f(θ) = a(θ)Hw, (1)

a(θ) = (g1(θ)e
2πj〈r1,r(θ)〉/λ, . . . , gN (θ)e2πj〈rN ,r(θ)〉/λ), (2)
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где λ— длина волны, j — мнимая единица, 〈·, ·〉— скалярное произведе-
ние, w — комплексный вектор возбуждения, определяющий как ампли-
туду тока |wk|, так и его фазу Argwk в каждом излучателе k. Наконец,
r(θ)— единичный вектор в направлении θ, а верхний индекс H обозначает
эрмитову транспозицию вектора. Введём обозначения

ai = a(θi), fi = f(θi) = aHi w, x = (Rew, Imw)⊤ ∈ R2N×1,

Ai =

Ç
Re a⊤i − Im a⊤i

Im a⊤i Rea⊤
i

å
=

(
a
(11)
i . . . a

(1,2N)
i

a
(21)
i . . . a

(2,2N)
i

)
∈ R2×2N .

Вещественнозначная версия (1), (2) для напряжённости поля в направ-
лении θi тогда примет вид (подробнее см., например, [9, п. 2.1])

(Re fi, Im fi)
⊤ = Aix. (3)

Мощность, излучаемая ФАР в направлении θi, равна

|fi|2 = x⊤Qix, Qi = A⊤
i Ai. (4)

Задача синтеза ФАР (см., например, [13]) сводится к поиску вектора воз-
буждений x такого, что для всех направлений i = 1, . . . , I мощность |fi|2,
излучаемая решёткой в направлении i, принадлежит заданному подмно-
жеству Ci ⊂ R.

Эта задача полагалась NP-трудной в [13] без строгого доказательства.
Очевидно, что она не проще, чем следующая задача распознавания, кото-
рую назовём распознавательным вариантом дискретной задачи синтеза
ФАР.

Задача 1 (дискретная задача синтеза ФАР). Дано I ∈ N целочис-

ленных (2 × 2N)-матриц Ai, i = 1, . . . , I, и 2I целочисленных значений

αi 6 βi, i = 1, . . . , I. Существует ли вектор x ∈ R2N такой, что

x⊤A⊤
i Aix ∈ {αi, βi}, i = 1, . . . , I? (5)

Теорема 1. Распознавательный вариант дискретной задачи синтеза

ФАР является NP-полной в сильном смысле задачей.

Перед доказательством теоремы получим следующую техническую
лемму, которая предполагает определённую координацию (синхрониза-
цию) возбуждений в элементах k = 1, . . . , N − 1 с элементом N.

Лемма 1. Если N > 3 и система ограничений содержит условия

x⊤Qkx = x2k + x2N+k ∈ {0, 1}, k < N, (6)

x⊤QNx = x2N + x22N = 1, (7)

x⊤QN+kx = 4x2k + 4x2N+k + x2N + x22N +

+ 4xkxN + 4xN+kx2N = 1, k < N, (8)
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то для любых k, ℓ < N перекрёстные произведения удовлетворяют ра-

венству

xkxℓ + xN+kxN+ℓ =

®
1, если x2k + x2N+k = x2ℓ + x2N+ℓ = 1,

0 в противном случае.
(9)

Доказательство. Очевидно, что если имеет место x2k + x2N+k = 0

или x2ℓ + x2N+ℓ = 0, то немедленно получаем xkxℓ + xN+kxN+ℓ = 0, что
удовлетворяет (9).

Рассмотрим случай x2k + x2N+k = x2ℓ + x2N+ℓ = 1. Тогда условие (8)
означает, что

xkxN + xN+kx2N = −1. (10)

Легко видеть, что при условии x2k+x
2
N+k = x2N +x22N = 1 минимум выра-

жения xkxN +xN+kx2N равен −1, и он достигается тогда и только тогда,
когда xk = −xN , xN+k = −x2N . Как раз этого и требует условие (10)
для всех k < N, поэтому в рассматриваемом случае xkxℓ + xN+kxN+ℓ =
x2N + x22N = 1, где последнее равенство следует из условия (7). Лемма 1
доказана.

Как видно из леммы 1, ограничения (8) обеспечивают согласование
фаз во всех излучающих элементах k < N с фазой в элементе N, которая
может быть произвольной.

Доказательство теоремы 1. Прежде всего отметим, что распо-
знавательный вариант дискретной задачи синтеза ФАР принадлежит
классу NP. Далее к рассматриваемой задаче распознавания сведём NP-
полную в сильном смысле задачу Независимое множество (см., на-
пример, [15]).

Задача 2 (Независимое множество). Даны граф G = (V,E) и це-

лое число K > 0. Содержит ли граф G подмножество попарно несмеж-

ных вершин S мощности K (т. е. независимое множество S, |S| = K)?

Пусть n = |V |, m = |E|, V = {v1, . . . , vn}, а ребро с номером r =
1, . . . ,m имеет вид er = vk(r)vℓ(r).

Для заданного графа G, т. е. примера задачи Независимое множе-

ство, построим пример распознавательной дискретной задачи синтеза
ФАР следующим образом. Пусть N = n+ 1 и все N векторов a1, . . . ,aN
вещественнозначны:

a1 = (1, 0, 0 . . . , 0)⊤, a2 = (0, 1, 0 . . . , 0)⊤, . . . , aN = (0, 0, . . . , 0, 1)⊤.

Тогда для любого k = 1, . . . , N все элементы матрицы Ak нулевые, за ис-
ключением a

(1,k)
k = a

(2,N+k)
k = 1.
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Подмножества Ck, k = 1, . . . , n, задаются двумя допустимыми значе-
ниями излучаемой мощности αk = 0, βk = 1. Тем самым Qk = A⊤

k Ak,

где все элементы равны нулю, за исключением q
(kk)
k = q

(N+k,N+k)
k = 1

при k = 1, . . . , n, т. е. первые n ограничений в системе (5) имеют вид

x2k + x2N+k ∈ {0, 1}, k = 1, . . . , n. (11)

Ограничения (11) задают альтернативу (0 или 1) для амплитуды воз-
буждения в излучающих элементах 1, . . . , n, что соответствует альтерна-
тиве в задаче Независимое множество: либо включить вершину vk
в набор S (когда x2k + x2N+k = 1), либо пропустить эту вершину (когда
x2k + x2N+k = 0).

Для последнего элемента ФАР фиксируем единичную амплитуду:

x2N + x22N = 1, (12)

поэтому CN = {1}. Этот элемент ФАР используем для координации фаз
во всех других излучающих элементах в том же смысле, в каком эле-
мент с номером N используется в лемме 1. С этой целью в каждом
векторе aN+k, k = 1, . . . , n, положим действительную часть k-го ком-
понента равной 2, а действительную часть компонента N положим рав-
ной 1. Остальные действительные и все мнимые части комплексного век-
тора aN+k полагаются равными 0. Тогда для любого k = 1, . . . , n все
элементы матрицы AN+k нулевые, за исключением a

(1k)
N+k = a

(2,N+k)
N+k = 2

и a(1N)
N+k = a

(2,N)
N+k = 1.

Подмножества CN+k, k = 1, . . . , n, состоят из одного элемента, рав-
ного 1: αk = 1, βk = 1 для k = N + 1, . . . , N + n. Тогда для любого
k = 1, . . . , n справедливо QN+k = A⊤

N+kAN+k, где все элементы рав-
ны нулю, за исключением четырёх элементов, соответствующих действи-
тельным частям: q(kk)N+k = 4, q

(N,N)
N+k = 1, q

(kN)
N+k = 2, q

(Nk)
N+k = 2, и четырёх

элементов, соответствующих мнимым частям:

q
(N+k,N+k)
N+k = 4, q

(2N,2N)
N+k = 1, q

(N+k,2N)
N+k = 2, q

(2N,N+k)
N+k = 2.

Следовательно, матрицы QN+k, k = 1, . . . , n, определяют ограничения

4x2k + 4x2N+k + x2N + x22N + 4xkxN + 4xN+kx2N = 1, (13)

где k = 1. . . . , n. Заметим, что ввиду леммы 1 ограничения (13) вместе
с (12) дают

xkxℓ + xN+kxN+ℓ ∈ {0, 1}, k = 1, . . . , n, ℓ = 1, . . . , n. (14)

Чтобы представить граф в терминах дискретной задачи синтеза ФАР,
для каждого ребра er, r = 1, . . . ,m, положим равными 1 действитель-
ные части двух компонент с индексами k(r) и ℓ(r) в векторе aN+n+r,
остальные действительные части Re aN+n+r полагаем равными нулю, как
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и все мнимые части, т. е. Im aN+n+r = (0, 0, . . . , 0)⊤. Тогда для любо-
го r = 1, . . . ,m матрица AN+n+r состоит из нулевых элементов, за ис-
ключением

a
(1,k(r))
N+n+r = a

(1,ℓ(r))
N+n+r = a

(2,N+k(r))
N+n+r = a

(2,N+ℓ(r))
N+n+r = 1.

Подмножества CN+n+r снова состоят из двух элементов, нуля и еди-
ницы: αi = 0, βi = 1 для i = N + n + 1, . . . , N + n + m. Тогда для
любого r = 1, . . . ,m имеем QN+n+r = A⊤

N+n+rAN+n+r, где все элемен-
ты равны нулю, за исключением четырёх элементов, соответствующих
действительным частям:

q
(k(r),k(r))
N+n+r = q

(ℓ(r),ℓ(r))
N+n+r = q

(k(r),ℓ(r))
N+n+r = q

(ℓ(r),k(r))
N+n+r = 1,

и четырёх элементов, соответствующих мнимым частям:

q
(N+k(r),N+k(r))
N+n+r = q

(N+ℓ(r),N+ℓ(r))
N+n+r = q

(N+k(r),N+ℓ(r))
N+n+r = q

(N+ℓ(r),N+k(r))
N+n+r = 1.

Следовательно, матрицы QN+n+r, r = 1, . . . ,m, определяют ограничения

x2k(r) + x2N+k(r) + x2ℓ(r) + x2N+ℓ(r) +

+ 2xk(r)xℓ(r) + 2xN+k(r)xN+ℓ(r) ∈ {0, 1}, r = 1, . . . ,m, (15)

которые вместе с (14) показывают, что должно выполняться хотя бы одно
из равенств x2k(r) + x2N+k(r) = 0, x2ℓ(r) + x2N+ℓ(r) = 0. Это соответствует
требованию, чтобы оба конца ребра er не принадлежали одновременно
множеству S.

Для подсчёта числа излучающих элементов с единичной амплитудой
возбуждения определим вектор aI , I = N + n+m+ 1, равенствами

ReaI = (1, 1, . . . , 1, 0)⊤, Im aI = (0, 0, . . . , 0, 0)⊤,

т. е.

AI =

Å
1, . . . , 1, 0 0, . . . , 0, 0
0, . . . , 0, 0 1, . . . , 1, 0

ã
,

и в QI = A⊤
I AI имеем q

(kℓ)
I = q

(N+k,N+ℓ)
I = 1 для всех k, ℓ = 1, . . . , n,

остальные элементы в QI равны нулю.
Пусть M =

{
k ∈ {1, . . . , n} | x2k + x2N+k = 1

}
. Тогда

x⊤QIx =
∑

k,ℓ∈M

(xkxℓ + xN+kxN+ℓ) = |M |2 (16)

в силу леммы 1 и определения множества M.
Наконец, положим αI = βI = K2, т. е. последнее ограничение в задаче

синтеза ФАР имеет вид
x⊤QIx = |K|2. (17)

С одной стороны, если этот экземпляр распознавательной задачи син-
теза ФАР имеет допустимое решение, то из (16) следует, что |M | = K,
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а множество вершин S = {vi | i ∈ M} является независимым в графе G
и имеет размер K. С другой стороны, если |S| = K в задаче Независи-

мое множество, то можно положить xk = 1 для всех k 6 n таких, что
vk ∈ S, и для k = n + 1, а остальные компоненты вектора x установить
равными нулю. Легко проверить, что все ограничения соответствующего
экземпляра распознавательной задачи синтеза ФАР выполнены.

Следовательно, индивидуальная задача Независимое множество

имеет положительный ответ тогда и только тогда, когда построенный
нами пример имеет положительный ответ, и это построение выполни-
мо за полиномиальное время. Таким образом, распознавательный вари-
ант дискретной задачи синтеза ФАР — NP-полная задача. Более того,
эта задача NP-полна в сильном смысле, поскольку числовые парамет-
ры построенного примера полиномиально ограничены от размера графа
в исходной задаче Независимое множество. Теорема 1 доказана.

2. Интервальная задача синтеза фаз

в частично заполненной антенной решётке

Как правило, излучатели ФАР располагаются некоторым регулярным
образом с фиксированным шагом, например, на линии, в узлах прямо-
угольной решётки, в вершинах правильного многоугольника и т. п. Одна-
ко в некоторых случаях могут использоваться и прореженные ФАР, в ко-
торых часть регулярных позиций не заполнена. Пусть r1, . . . , rN ∈ R3 да-
лее описывают расположение регулярных позиций. Прореженные ФАР,
таким образом, имеют менее N излучателей, что выгодно снижает стои-
мость и взаимное влияние между элементами, но также невыгодно повы-
шает излучаемую мощность в нежелательных направлениях (см., напри-
мер, [14, 16, § 1.17]). Прореженные ФАР, в которых все элементы имеют
одинаковую мощность возбуждения, могут быть основаны на случайном
расположении элементов (см., например, [17, 18, гл. 7]) или специально
выбранном подмножестве регулярных положений излучателей, напри-
мер, с использованием разностных множеств [16, 19].

Некоторое снижение излучаемой мощности в нежелаемых направле-
ниях может быть получено путём подачи неравных по амплитуде воз-
буждений на элементы антенны. Как отмечено в [16], недостаток этого
подхода заключается в том, что усиление ФАР будет меньше, чем у ре-
шётки, в которой полная мощность прикладывается ко всем элементам,
что также согласуется с результатами вычислительных экспериментов
в [9, § 3.2]. В связи с этим в этом разделе рассмотрим задачу синтеза
ФАР, где амплитуды возбуждения не подлежат оптимизации.

Задача заключается в выборе подмножества излучателей из задан-
ной ФАР, состоящей из N элементов, и в назначении фаз возбуждения
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выбранным элементам так, чтобы для всех направлений i = 1, . . . , I мощ-
ность, излучаемая решёткой в направлении i, принадлежала соответ-
ствующему интервальному подмножеству Ci = [Li, Ui] ⊂ R. Без потери
общности можно предположить, что амплитуда в каждом элементе рав-
на 1. Очевидно, что такая задача синтеза ФАР не будет проще следующей
задачи распознавания, которую назовём распознавательным вариантом
задачи синтеза частично заполненной ФАР.

Задача 3 (синтез частично заполненной ФАР). Даны I ∈ N целочис-

ленных (2 × 2N)-матриц Ai, i = 1, . . . , I, и 2I целочисленных значений

Li 6 Ui, i = 1, . . . , I. Существует ли вектор x ∈ R2N такой, что

x2k + x2N+k ∈ {0, 1}, k = 1, . . . , N, (18)

x⊤A⊤
i Aix ∈ [Li, Ui], i = 1, . . . , I? (19)

Условие (18) здесь подразумевает, что излучающий элемент создаётся
на позиции k тогда и только тогда, когда x2k + x2N+k ∈ {0, 1}.

Заметим, что в отличие от распознавательного варианта дискретной
задачи синтеза ФАР, сформулированная здесь задача требует, чтобы из-
лучаемая мощность в каждом направлении i = 1, . . . , I принадлежала
непрерывному интервалу [Li, Ui], а не дискретному множеству {αi, βi}.
В этом смысле распознавательный вариант задачи синтеза частично за-
полненной ФАР имеет более реалистичную постановку.

Теорема 2. Распознавательный вариант задачи синтеза частично за-

полненной ФАР является NP-полной в сильном смысле задачей.

Доказательство аналогично доказательству теоремы 1 с тем от-
личием, что здесь при построении сводимости не требуются ограниче-
ния (11), так как они следуют из условия (18), содержащегося в фор-
мулировке задачи. Аналоги всех прочих ограничений — (12), (13), (15)
и (17) — отличаются тем, что в правой части содержат интервалы [Li, Ui],
где Li = αi, Ui = βi. Теорема 2 доказана.

Заключение

С использованием эффективной сводимости известной NP-полной за-
дачи Независимое множество показано, что поиск допустимого воз-
буждения ФАР является NP-трудной в сильном смысле задачей в случае,
когда по каждому направлению допускается одно или два значения мощ-
ности излучения (теорема 1). Формально эта задача является частным
случаем рассмотренной в [13] задачи синтеза ФАР. Однако более реали-
стичной постановкой является другой частный случай, когда по каждо-
му направлению задан непрерывный интервал для мощности излучения
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(интервальная постановка). Частный случай этой задачи, когда допусти-
мые интервалы на излучаемую мощность представляют собой верхние
границы, эффективно разрешим [8]. Предполагается, что дальнейшие ис-
следования позволят уточнить границу, разделяющую труднорешаемые
варианты задачи синтеза ФАР от эффективно разрешимых случаев.

В работе также рассмотрена модификация интервальной постанов-
ки задачи, когда в каждой известной позиции можно установить или
не устанавливать излучающий элемент, амплитуды всех излучателей оди-
наковы, а фазы излучателей требуется найти. NP-трудность поиска до-
пустимого решения для этой задачи следует из теоремы 2.
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Abstract. We consider the problem of phased antenna array synthe-
sis, which consists of choosing phases and amplitudes for all radiating
elements when it is required that the resulting radiation pattern in each
direction considered belongs to a given set. It is established that the
search for an admissible solution is a strongly NP-hard problem in the
case when, for each direction considered, one or two radiation power
values are allowed. In addition, the NP-hardness of finding an admissi-
ble solution in the problem of synthesis of a thinned antenna array is
proven in the case when, for each direction considered, radiation power
belongs to a given interval and excitation amplitudes in all elements are
identical. Bibliogr. 19.
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