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Аннотация. Рассматриваются обобщённые централизаторы бинар-
ного отношения σ, представляющие собой полугруппы отношений
(многозначных отображений), сохраняющих отношение σ в опре-
делённом смысле. Определяется восемь неэквивалентных условий
того, что может значить термин «сохранять отношение». Рассмот-
рены все возможные комбинации этих условий, приводящие к раз-
личным полугруппам обобщённых централизаторов бинарного от-
ношения, в зависимости от мощности множества, на котором это
отношение задано. В частности, доказано восемь теорем, устанав-
ливающих связь между этими условиями: первые четыре теоремы
выполняются только для конечных множеств, а последние — для
произвольных. Также установлена полнота этого списка теорем для
множеств мощности не меньше 4. Для каждой мощности дан исчер-
пывающий ответ на вопрос о числе обобщённых централизаторов.
Табл. 2, библиогр. 5.

Ключевые слова: обобщённый централизатор, полугруппа бинар-
ных отношений.

Введение

Для непустого множества X определим следующие множества:
• S(X)— множество всех биективных отображений α : X → X;
• T (X)— множество всех отображений α : X → X;
• P (X)— множество всех частичных отображений α : X1 → X, где

X1 ⊆ X — произвольное подмножество;
• B(X)— множество всех многозначных отображений α : X → X, т. е.

бинарных отношений α ⊆ X ×X.
Элементы из S(X), T (X), P (X) можно также рассматривать как би-

нарные отношения, т. е. отождествлять отображение α с отношением
{(x, xα) ∈ X ×X | образ xα определён}.
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На этих множествах можно ввести умножение следующим образом:

αβ = {(x, y) ∈ X ×X | ∃ z : (x, z) ∈ α, (z, y) ∈ β}.
Относительно этой бинарной операции вышеописанные множества обра-
зуют полугруппы, а S(X) — группу.

Замечание 1. Справедливы включения S(X) ⊆ T (X) ⊆ P (X) ⊆
B(X), и при |X| > 2 все включения строгие. Каждая предыдущая полу-
группа — подполугруппа следующей, а S(X)— подгруппа T (X).

Например, при X = {1, 2, 3, 4} имеем

α =

Å
1 2 3 4
3 3 1 4

ã
∈ T (X) \ S(X), β =

Å
1 2 3 4
− 3 3 1

ã
∈ P (X) \ T (X),

γ =

Å
1 2 3 4
{1, 3} − 2 {2, 3, 4}

ã
∈ B(X) \ P (X).

Замечание 2. Бинарные отношения можно понимать и в более ши-
роком смысле как α ⊆ A × B. Тогда можно будет умножать α ⊆ A × B
на β ⊆ B × C, получая αβ ⊆ A× C (см. [1]).

Для α ∈ B(X) определяется отношение

α−1 = {(y, x) ∈ X ×X | (x, y) ∈ α}.
Вообще, для α ⊆ X × Y аналогично определяется α−1 ⊆ Y ×X.

Пусть x, y ∈ X и α ∈ T (X). Определим действие полугруппы отобра-
жений на множестве X следующим образом:

xα = y ⇔ (x, y) ∈ α.
Что означает фраза «преобразование α сохраняет отношение σ»? Для

α ∈ P (X) можно определять сохранение σ разными неэквивалентными
способами, как описано в [2]. Бинарное отношение σ можно рассмат-
ривать как граф с множеством вершин X, тогда фраза «отображение
α : X → X сохраняет σ» может означать, что α является эндоморфиз-
мом графа. Различные подходы к понятию эндоморфизма графа описа-
ны в [3]. Сохранение n-арного отношения рассматривалось в [4].

В качестве определения понятия «отображение α : X → X сохраняет
отношение σ ∈ B(X)» возьмём следующее:

∀x, y ∈ X (x, y) ∈ σ → (xα, yα) ∈ σ.
Легко доказать, что это условие равносильно каждому из включений
σ ⊆ ασα−1, α−1σα ⊆ σ, σα ⊆ ασ, α−1σ ⊆ σα−1. При рассмотрении про-
извольного отношения вместо отображения α эти условия оказываются,
вообще говоря, неэквивалентными. Например, полугруппы отношений
с условиями σ ⊆ ασα−1 и α−1σα ⊆ σ, рассмотренные в [5], различны.
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Отметим также, что в случае, когда α представляет собой отношение,
а не отображение, α и α−1 равноправны. По этой причине кроме при-
ведённых выше четырёх включений имеет смысл рассматривать также
четыре двойственных к ним, которые получаются заменой α на α−1, по-
этому в настоящей работе рассматриваются следующие 8 соотношений:

(1) ασα−1 ⊆ σ, (2) σ ⊆ ασα−1,
(3) α−1σα ⊆ σ, (4) σ ⊆ α−1σα,
(5) σα ⊆ ασ, (6) ασ ⊆ σα,
(7) σα−1 ⊆ α−1σ, (8) α−1σ ⊆ σα−1.

Пусть I = {1, . . . , 8}— множество номеров рассматриваемых условий.
Каждой паре отношений (σ, α) поставим в соответствие набор K(σ, α) =
(k1, . . . , k8) ∈ {0, 1}8, в котором ki = 0, если соотношение (i) не выпол-
няется, и ki = 1, если соотношение (i) выполняется, где i ∈ I. Всего
есть 2|I| = 28 = 256 наборов, однако многие из них невозможны, так
как из некоторых соотношений можно вывести другие. Например, как
будет показано далее, (2)∧ (3)→ (5), а значит, все наборы вида ∗11∗0∗∗∗
невозможны. Далее для всех мощностей множества X будет определено,
какие наборы возможны, а какие невозможны.

Для σ ∈ B(X) и i ∈ I положим

Bi
σ(X) = {α ∈ B(X) | α удовлетворяет условию (i)}.

Нетрудно проверить, что множество Bi
σ(X)— подполугруппа полугруп-

пы B(X). Следовательно, если {i1, i2, . . . , ik} ⊆ I, то множество

Bi1,i2,...,ik
σ (X) = Bi1

σ (X) ∩Bi2
σ (X) ∩ · · · ∩Bik

σ (X)

также представляет собой подполугруппу полугруппы B(X). Полугруп-
пу Bi1,i2,...,ik

σ (X) можно условно считать полугруппой отображений (воз-
можно, многозначных), сохраняющих σ.Наряду с Bi

σ(X) можно рассмат-
ривать полугруппы P i

σ(X) = P (X) ∩ Bi
σ(X) и T i

σ(X) = T (X) ∩ Bi
σ(X),

а также их пересечения.
Множество Bi1,i2,...,ik

σ (X) будем называть обобщённым централизато-

ром бинарного отношения σ ∈ B(X), а функцию Bi1,i2,...,ik
• (X) : σ 7→

Bi1,i2,...,ik
σ (X) — обобщённым централизатором. Сразу видно, что для лю-

бого множества X имеется не больше чем 2|I| = 28 = 256 обобщённых
централизаторов. Оказывается, что их всегда будет значительно меньше
чем 256, так как из некоторых соотношений можно вывести другие, а зна-
чит, многие обобщённые централизаторы будут совпадать друг с другом.
Например, как будет показано далее, (2) ∧ (3) → (5), а значит, B2,3

• (X)

и B2,3,5
• (X) совпадают. Цель этой работы — для всех мощностей X опре-

делить, какие обобщённые централизаторы совпадают, а какие нет.
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Утверждение 1. Для произвольного множества X возможных на-

боров не больше, чем обобщённых централизаторов.

Доказательство. Пусть P = (p1, . . . , p8) и Q = (q1, . . . , q8)— про-
извольные наборы. Введём отношение частичного порядка на наборах
следующим образом:

P 4 Q⇔ ∀ i ∈ I pi 6 qi.

Будем называть набор P = (p1, . . . , p8) допустимым для обобщённого
централизатора BS

• (X) в том и только том случае, когда выполняется
импликация i ∈ S → pi = 1. Например, для обобщённого централизатора
B1,4,5

• (X) допустимыми будут наборы вида 1∗∗11∗∗∗ и только они.
Произвольному возможному набору P = (p1, . . . , p8) поставим в со-

ответствие обобщённый централизатор f(P ) = BS
• (X) для множества

S = {i ∈ I | pi = 1}. Покажем, что отображение f из множества воз-
можных наборов в множество обобщённых централизаторов инъектив-
но. Пусть f(P ) = f(Q), покажем, что P = Q. Рассмотрим множество
{K(σ, α) | α ∈ f(P )(σ)} возможных допустимых наборов для обобщённо-
го централизатора f(P ). У него есть наименьший относительно поряд-
ка 4 элемент P. Аналогично у множества {K(σ, α) | α ∈ f(Q)(σ)} есть
наименьший элементQ. Так как f(P ) = f(Q), эти множества равны, а по-
скольку у любого частично упорядоченного множества не больше одного
наименьшего элемента, получаем P = Q. Следовательно, отображение f
инъективное, т. е. возможных наборов не больше, чем обобщённых цен-
трализаторов. Утверждение 1 доказано.

Замечание 3. Отметим, что число возможных наборов и число обоб-
щённых централизаторов не всегда совпадают, так как существуют обоб-
щённые централизаторы, для которых множество возможных наборов
не имеет наименьшего элемента. Например, для множеств мощности 2
выполняется (4) → (1) ∨ (2), при этом (4) 9 (1) и (4) 9 (2), а значит,
у B4

•(X) нет наименьшего возможного набора. Здесь и далее при записи
утверждений вывода будем подразумевать, что импликация имеет наи-
меньший приоритет перед операциями в левой и правой частях.

Утверждение 2. Пусть |X| 6 |Y | для множеств X и Y.
1. Если набор возможен для X, то он возможен для Y. В частности,

число возможных наборов для X не больше, чем для Y.
2. Если два обобщённых централизатора различны для X, то они раз-

личны для Y. В частности, число обобщённых централизаторов для X
не больше, чем для Y.

Доказательство. Так как |X| 6 |Y |, существует инъективное отоб-
ражение f : X → Y.
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1. Если набор P возможен на множестве X, то существует пара (σ, α)
отношений на множестве X таких, что K(σ, α) = P. Тогда имеем следу-
ющую пару (σ̃, α̃) отношений на множестве Y таких, что K(σ̃, α̃) = P :

σ̃ = {(f(a), f(b)) | (a, b) ∈ σ}, α̃ = {(f(a), f(b)) | (a, b) ∈ α}.
2. Если BS

• (X) и BT
• (X) различны на множестве X, то существует па-

ра (σ, α) отношений на множестве X таких, что α ∈ BS
σ (X) и α /∈ BT

σ (X),
или таких, что α /∈ BS

σ (X) и α ∈ BT
σ (X). Без ограничения общности будем

считать, что выполняется первый случай, т. е. α ∈ BS
σ (X) и α /∈ BT

σ (X).
Тогда имеем следующую пару (σ̃, α̃) отношений на множестве Y таких,
что α̃ ∈ BS

σ̃ (X) и α̃ /∈ BT
σ̃ (X):

σ̃ = {(f(a), f(b)) | (a, b) ∈ σ}, α̃ = {(f(a), f(b)) | (a, b) ∈ α}.
Утверждение 2 доказано.

1. Результаты для конечных множеств

С помощью полного компьютерного перебора пар (σ, α) бинарных от-
ношений на множестве X мощности |X| 6 4 найдены все возможные
наборы и все обобщённые централизаторы, их количества приведены
в табл. 1. Так как для некоторых мощностей их достаточно много, вместо
возможных наборов и обобщённых централизаторов для каждой мощно-
сти приведём системы утверждений, по которым их можно восстановить.

Все представленные ниже системы утверждений обладают тремя по-
лезными свойствами:

1) корректность, т. е. для каждого возможного набора выполняются
все утверждения системы;

2) полнота, т. е. каждый набор, для которого выполняются все утвер-
ждения системы, возможный;

3) независимость, т. е. если исключить какое-нибудь утверждение
из системы, то появятся новые наборы, для которых выполняются все
утверждения системы.

Таблица 1

Результаты компьютерного перебора

|X|
Число возможных

наборов
Число обобщённых
централизаторов

0 1 1
1 2 2
2 38 127
3 143 151
4 151 151
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Система утверждений для |X| = 0:

(1), (2), (3), (4), (5), (6), (7), (8).

Система утверждений для |X| = 1:

(1), (2)→ (4), (3), (4)→ (2), (5), (6), (7), (8).

Система утверждений для |X| = 2:

(3) ∧ (4) ∧ (6) ∧ (7)→ (1), (3) ∧ (6) ∧ (7) ∧ (8)→ (5),

(3) ∧ (4) ∧ (5) ∧ (8)→ (2), (1) ∧ (5) ∧ (7) ∧ (8)→ (6),

(1) ∧ (2) ∧ (5) ∧ (8)→ (3), (1) ∧ (5) ∧ (6) ∧ (8)→ (7),

(1) ∧ (2) ∧ (6) ∧ (7)→ (4), (3) ∧ (5) ∧ (6) ∧ (7)→ (8),

(2) ∧ (3)→ (5), (6) ∧ (7)→ (1) ∨ (5), (6)→ (1) ∨ (5) ∨ (8),

(1) ∧ (4)→ (6), (6) ∧ (7)→ (1) ∨ (8), (7)→ (1) ∨ (5) ∨ (8),

(1) ∧ (4)→ (7), (5) ∧ (8)→ (3) ∨ (6), (5)→ (3) ∨ (6) ∨ (7),

(2) ∧ (3)→ (8), (5) ∧ (8)→ (3) ∨ (7), (8)→ (3) ∨ (6) ∨ (7),

(1) ∧ (5)→ (2) ∨ (6) ∨ (7), (1) ∧ (8)→ (2) ∨ (6) ∨ (7),

(3) ∧ (6)→ (4) ∨ (5) ∨ (8), (3) ∧ (7)→ (4) ∨ (5) ∨ (8),

(4)→ (1) ∨ (2), (6)→ (1) ∨ (2), (7)→ (1) ∨ (2),

(2)→ (3) ∨ (4), (5)→ (3) ∨ (4), (8)→ (3) ∨ (4).

Система утверждений для |X| = 3:

(1) ∧ (2) ∧ (7)→ (5) ∨ (6), (3) ∧ (4) ∧ (8)→ (5) ∨ (6),

(1) ∧ (2) ∧ (6)→ (7) ∨ (8), (3) ∧ (4) ∧ (5)→ (7) ∨ (8),

(3) ∧ (4) ∧ (6) ∧ (7)→ (1), (2) ∧ (3)→ (5),

(3) ∧ (4) ∧ (5) ∧ (8)→ (2), (1) ∧ (4)→ (6),

(1) ∧ (2) ∧ (5) ∧ (8)→ (3), (1) ∧ (4)→ (7),

(1) ∧ (2) ∧ (6) ∧ (7)→ (4), (2) ∧ (3)→ (8).

Система утверждений для |X| = 4:

(3) ∧ (4) ∧ (6) ∧ (7)→ (1), (2) ∧ (3)→ (5),

(3) ∧ (4) ∧ (5) ∧ (8)→ (2), (1) ∧ (4)→ (6),

(1) ∧ (2) ∧ (5) ∧ (8)→ (3), (1) ∧ (4)→ (7),

(1) ∧ (2) ∧ (6) ∧ (7)→ (4), (2) ∧ (3)→ (8).

Отметим, что корректность, полнота и независимость приведённых
выше систем несложно проверяются с помощью компьютера.
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Оказывается, что для конечного множества X мощности |X| > 4 си-
стема утверждений будет выглядеть так же, как и для множества мощно-
сти 4, что докажем далее. Независимость системы несложно проверяет-
ся с помощью компьютера. Полнота системы следует из её полноты для
|X| = 4 и утверждения 2. Корректность системы показывают следующие
восемь теорем.

Теорема 1. Пусть σ и α— отношения на конечном множестве X и вы-

полняются соотношения

(3) α−1σα ⊆ σ, (4) σ ⊆ α−1σα, (6) ασ ⊆ σα, (7) σα−1 ⊆ α−1σ.

Тогда выполняется соотношение (1) ασα−1 ⊆ σ.
Доказательство. Поскольку множество X конечно, степени α нач-

нут периодически повторяться начиная с некоторого числа:

∃n ∈ Z>0 ∃ t ∈ Z>0 : α
n+t+1 = αn.

Здесь n > 0— целое, с которого начинаются повторения, а t + 1 > 1—
период. В этом случае из цепочки соотношений

ασα−1
(7)

⊆ αα−1σ
(4)

⊆ α(α−1)n+t+1σαn+t = α(α−1)nσαn+t
(3)

⊆
(3)

⊆ ασαt
(6)

⊆ σαt+1
(4)

⊆ (α−1)nσαn+t+1 = (α−1)nσαn
(3)

⊆ σ

получаем (1) ασα−1 ⊆ σ. Теорема 1 доказана.

Теорема 2. Пусть σ и α— отношения на конечном множестве X и вы-

полняются соотношения

(3) α−1σα ⊆ σ, (4) σ ⊆ α−1σα, (5) σα ⊆ ασ, (8) α−1σ ⊆ σα−1.

Тогда выполняется соотношение (2) σ ⊆ ασα−1.

Доказательство. Используя конечность множества X, делаем вы-
вод, что начиная с какого-то номера, степени α начнут периодически
повторяться:

∃n ∈ Z>0 ∃ t ∈ Z>0 : α
n+t+1 = αn.

Здесь n— номер, с которого начинаются повторения, а t+1— период, ко-
торый обязательно не меньше 1. В этом случае из цепочки соотношений

σ
(4)

⊆ (α−1)n+t+1σαn+t+1 = (α−1)nσαn+t+1
(3)

⊆ σαt+1
(5)

⊆ ασαt
(4)

⊆
(4)

⊆ α(α−1)n+1σαn+t+1 = α(α−1)n+1σαn
(3)

⊆ αα−1σ
(8)

⊆ ασα−1

получаем (2) σ ⊆ ασα−1. Теорема 2 доказана.
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Теорема 3. Пусть σ и α— отношения на конечном множестве X и вы-

полняются соотношения

(1) ασα−1 ⊆ σ, (2) σ ⊆ ασα−1, (5) σα ⊆ ασ, (8) α−1σ ⊆ σα−1.

Тогда выполняется соотношение (3) α−1σα ⊆ σ.
Доказательство. С помощью замены α на α−1 можно увидеть, что

эта теорема равносильна теореме 1. Теорема 3 доказана.

Теорема 4. Пусть σ и α— отношения на конечном множестве X и вы-

полняются соотношения

(1) ασα−1 ⊆ σ, (2) σ ⊆ ασα−1, (6) ασ ⊆ σα, (7) σα−1 ⊆ α−1σ.

Тогда выполняется соотношение (4) σ ⊆ α−1σα.

Доказательство. С помощью замены α на α−1 можно увидеть, что
эта теорема равносильна теореме 2. Теорема 4 доказана.

Оставшиеся четыре теоремы сформулируем и докажем в обобщённом
виде. Вместо одного множества X рассмотрим два множества X и Y,
а вместо одного отношения σ— два отношения ρ и σ. При этом в част-
ном случае, когда X = Y и ρ = σ, получим интересующие нас утвержде-
ния. Отметим, что первые четыре теоремы не допускают аналогичного
обобщения, что несложно проверить с помощью компьютера. Также для
четырёх теорем ниже не будем требовать конечности множеств X и Y.

Теорема 5. Пусть ρ ∈ B(X), σ ∈ B(Y ), α— отношение между множе-

ствами X и Y, т. е. α ⊆ X × Y, и выполняются обобщённые соотношения

(2) ρ ⊆ ασα−1, (3) α−1ρα ⊆ σ.
Тогда выполняется обобщённое соотношение (5) ρα ⊆ ασ.

Доказательство. В этом случае из цепочки соотношений

(x, y) ∈ ρα (2)⇔ (x, y) ∈ ρα ∧ (x, y) ∈ ασα−1α⇔

⇔ ∃ y′ ∈ Y (x, y) ∈ ρα ∧ (x, y′) ∈ α⇒ (x, y) ∈ αα−1ρα
(3)⇒ (x, y) ∈ ασ

получаем утверждение ∀x ∈ X ∀ y ∈ Y (x, y) ∈ ρα → (x, y) ∈ ασ, равно-
сильное соотношению (5) ρα ⊆ ασ. Теорема 5 доказана.

Теорема 6. Пусть ρ ∈ B(X), σ ∈ B(Y ), α— отношение между множе-

ствами X и Y, т. е. α ⊆ X × Y, и выполняются обобщённые соотношения

(1) ασα−1 ⊆ ρ, (4) σ ⊆ α−1ρα.

Тогда выполняется обобщённое соотношение (6) ασ ⊆ ρα.
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Доказательство. В этом случае из цепочки соотношений

(x, y) ∈ ασ (4)⇔ (x, y) ∈ ασ ∧ (x, y) ∈ αα−1ρα⇔

⇔ ∃x′ ∈ X (x, y) ∈ ασ ∧ (x′, y) ∈ α⇒ (x, y) ∈ ασα−1α
(1)⇒ (x, y) ∈ ρα

получаем утверждение ∀x ∈ X ∀ y ∈ Y (x, y) ∈ ασ → (x, y) ∈ ρα, равно-
сильное утверждению (6) ασ ⊆ ρα. Теорема 6 доказана.

Теорема 7. Пусть ρ ∈ B(X), σ ∈ B(Y ), α— отношение между множе-

ствами X и Y, т. е. α ⊆ X × Y, и выполняются обобщённые соотношения

(1) ασα−1 ⊆ ρ, (4) σ ⊆ α−1ρα.

Тогда выполняется обобщённое соотношение (7) σα−1 ⊆ α−1ρ.

Доказательство. С помощью замен

X ↔ Y, ρ↔ σ, α↔ α−1

можно увидеть, что эта теорема равносильна теореме 5. Теорема 7 дока-
зана.

Теорема 8. Пусть ρ ∈ B(X), σ ∈ B(Y ), α— отношение между множе-

ствами X и Y, т. е. α ⊆ X × Y, и выполняются обобщённые соотношения

(2) ρ ⊆ ασα−1, (3) α−1ρα ⊆ σ.
Тогда выполняется обобщённое соотношение (8) α−1ρ ⊆ σα−1.

Доказательство. С помощью замен

X ↔ Y, ρ↔ σ, α↔ α−1

можно увидеть, что эта теорема равносильна теореме 6. Теорема 8 дока-
зана.

2. Результаты для бесконечных множеств

Первые четыре теоремы доказаны в предположении, что множество X
конечно. Оказывается, что они не выполняются для бесконечных мно-
жеств. При этом никаких более слабых утверждений не добавляется,
т. е. система утверждений для бесконечных множеств имеет вид

(2) ∧ (3)→ (5), (1) ∧ (4)→ (6), (1) ∧ (4)→ (7), (2) ∧ (3)→ (8).

Независимость системы несложно проверяется с помощью компью-
тера. Теоремы 5–8 показывают корректность системы. Для того чтобы
показать полноту, нужно доказать, что все наборы, удовлетворяющие си-
стеме, возможны, т. е. достаточно предъявить пару (σ, α) для каждого
такого набора. Оказывается, что таких наборов 169, при этом для 151
из них несложно с помощью компьютера найти пары (σ, α) отношений
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на множестве мощности 4, а потом преобразовать их в пары отноше-
ний на бесконечном множестве с использованием утверждения 2. Зна-
чит, остаётся привести 18 пар отношений на множестве мощности ℵ0.
При этом достаточно привести 9 пар отношений, а остальные 9 полу-
чаются из них заменой α на α−1. Далее в виде примеров приведены эти
9 пар отношений на множестве Z>0. Подробно опишем один из примеров,
остальные проверяются аналогично.

Пример 1. Для наборов K(σ, α) = 10111111 и K(σ, α−1) = 11101111
возьмём отношения

σ = {(i, i) | i ∈ Z>0}, α = {(i+ 1, i) | i ∈ Z>0}.
Заметим, что

σα = ασ = α, σα−1 = α−1σ = α−1,

α−1σα = α−1α, ασα−1 = αα−1.

Из равенств в первой строке очевидно, что выполняются соотношения
(5)–(8). Далее по определению α получаем

αα−1 = {(i+ 1, i+ 1) | i ∈ Z>0} ⊂ σ, α−1α = {(i, i) | i ∈ Z>0} = σ,

откуда непосредственно следует, что K(σ, α) = 10111111. Такой набор
невозможен для конечных множеств в силу теоремы 2.

Пример 2. Для наборов K(σ, α) = 00111001 и K(σ, α−1) = 11000110

σ = {(i+ 1, i + 1) | i ∈ Z>0}, α = {(i + 2, i + 1) | i ∈ Z>0} ∪ {(0, 1)}.

Пример 3. Для наборов K(σ, α) = 00111011 и K(σ, α−1) = 11001110

σ = {(i+ 1, i + 1) | i ∈ Z>0} ∪ {(1, 0)},
α = {(i + 3, i+ 2) | i ∈ Z>0} ∪ {(0, 0), (0, 1), (1, 1)}.

Пример 4. Для наборов K(σ, α) = 00111101 и K(σ, α−1) = 11000111

σ = {(i+ 1, i + 1) | i ∈ Z>0} ∪ {(0, 1)},
α = {(i + 3, i+ 2) | i ∈ Z>0} ∪ {(0, 0), (0, 1), (1, 1)}.

Пример 5. Для наборов K(σ, α) = 01111111 и K(σ, α−1) = 11011111

σ = {(i, i) | i ∈ Z>0}, α = {(i+ 1, i) | i ∈ Z>0} ∪ {(0, 0)}.

Пример 6. Для наборов K(σ, α) = 00110110 и K(σ, α−1) = 11001001

σ = {(i, i) | i ∈ Z>0} ∪ {(0, 1), (1, 0)},
α = {(i + 3, i+ 2) | i ∈ Z>0} ∪ {(1, 0), (1, 1), (2, 2)}.
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Пример 7. Для наборов K(σ, α) = 00110111 и K(σ, α−1) = 11001101

σ = {(i+ 3, i+ 3) | i ∈ Z>0} ∪ {(1, 0), (2, 0)},
α = {(i+ 4, i + 3) | i ∈ Z>0} ∪ {(0, 0), (2, 1), (2, 2), (3, 3)}.

Пример 8. Для наборов K(σ, α) = 00111110 и K(σ, α−1) = 11001011

σ = {(i+ 3, i+ 3) | i ∈ Z>0} ∪ {(2, 0), (2, 1)},
α = {(i+ 4, i + 3) | i ∈ Z>0} ∪ {(1, 0), (1, 1), (2, 2), (3, 3)}.

Пример 9. Для наборов K(σ, α) = 00111111 и K(σ, α−1) = 11001111

σ = {(i, i) | i ∈ Z>0}, α = {(i+ 2, i) | i ∈ Z>0} ∪ {(0, 0)}.
В заключение приведём табл. 2 — дополненную версию табл. 1. От-

метим, что при любом σ все обобщённые централизаторы непусты, так
как K(σ, ε) = 11111111, а значит, ε принадлежит каждому обобщённо-
му централизатору. Вместе с тем, B∅

σ (X) = B(X) при любом отношении
σ, поэтому интересных обобщённых централизаторов на один меньше,
чем числа, приведённые в табл. 2. Наконец, значения в табл. 1 и 2 со-
ответствуют утверждениям 1 и 2, поскольку не убывают при движении
по таблицам слева направо или сверху вниз.

Таблица 2

Результаты перебора для всех мощностей

|X|
Число возможных

наборов
Число обобщённых
централизаторов

0 1 1
1 2 2
2 38 127
3 143 151

4 6 |X | < ℵ0 151 151
|X | > ℵ0 169 169
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Abstract. We consider generalized centralizers of a binary relation σ,
which are semi-groups of relations (multi-valued mappings) that pre-
serve the relation σ in a certain sense. Eight nonequivalent conditions
are defined to specify what the term “to preserve a relation” can mean.
All possible combinations of these conditions are considered, resulting
in different semi-groups of generalized centralizers of a binary relation,
depending on the cardinality of the set on which the relation is defined.
Specifically, eight theorems are proven, establishing the connection be-
tween these conditions: the first four theorems hold only for finite sets,
while the last four are valid for arbitrary sets. Furthermore, the com-
pleteness of this list of theorems is demonstrated for sets of cardinality
no less than 4. For each cardinality, an exhaustive answer is provided
regarding the number of distinct generalized centralizers. Tab. 2, bibli-
ogr. 5.
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