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Аннотация. На основе анализа больших массивов эксперименталь-
ных данных исследуется проблема поиска идеальных двумерных
кольцевых циркулянтных сетей, оптимальных по двум параметрам —
диаметру и среднему расстоянию. Ранее авторами был получен боль-
шой датасет (база данных) оптимальных по диаметру двумерных
кольцевых циркулянтных сетей. В настоящей работе получен новый
датасет рассматриваемых сетей, оптимальных по среднему расстоя-
нию. Исследование графов указанных датасетов позволило вывести
новые свойства соотношений диаметра и среднего расстояния в оп-
тимальных циркулянтах и получить семейства наилучших по двум
параметрам оптимальных циркулянтных сетей, для которых приме-
ним настраиваемый по числу узлов эффективный алгоритм марш-
рутизации константной сложности. Идеальные двумерные кольце-
вые циркулянты представляют интерес как эффективные и надёж-
ные топологии для межузловых связей в сетях на кристалле и ин-
формационно-коммуникационных системах. Ил. 6, библиогр. 27.

Ключевые слова: кольцевая циркулянтная сеть, диаметр, сред-
нее расстояние, датасет оптимальных циркулянтов, алгоритм марш-
рутизации.

Введение

Циркулянтные графы степени четыре изучаются в теории и различ-
ных прикладных областях, включая использование в качестве топологий
сетей связи суперкомпьютеров и сетей на кристалле [1–9]. Дадим общее
определение исследуемого класса сетей. Циркулянтная сеть (circulant
network) степени четыре представляет собой неориентированный граф
C(N ; s1, s2), где 1 6 s1 < s2 < N/2, с множеством вершин V = ZN =
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{0, 1, . . . , N − 1}, в котором каждая вершина i ∈ V смежна с верши-
нами (i ± s1) mod N и (i ± s2) mod N. Числа s1, s2 — образующие, N —
порядок графа. Граф C(N ; s1, s2) связен, если НОД(N, s1, s2) = 1. Если
s1 = 1, то граф C(N ; 1, s) называется двумерным кольцевым циркулянт-

ным графом (двумерный — по числу образующих k = 2). В англоязыч-
ной литературе для этого графа применяются также названия undirected
double-loop network, chordal ring of fourth degree. На рис. 1 изображена
циркулянтная сеть C(10; 1, 4).
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Рис. 1. Циркулянтная сеть C(10; 1, 4)

Диаметром графа называется длина d = d(N ; s1, s2) максимально-
го кратчайшего пути на множестве всевозможных пар вершин. Среднее

расстояние (mean path length, average distance) определяется как

d = d(N ; s1, s2) =
1

N − 1

d∑

i=1

ini,

где ni — число вершин графа, находящихся на расстоянии i от нулевой
вершины. В ряде работ показано, что минимизация диаметра (средне-
го расстояния) при заданных порядке и степени графа оптимизирует
структурные задержки при передаче данных, пропускную способность
и другие характеристики топологии сети связи и напрямую влияет на по-
вышение производительности вычислительного кластера [1, 10].

Основной объект исследования в данной работе — класс циркулянт-
ных графов вида C(N ; 1, s), где N > 5, 2 6 s < N/2. Пусть

d(N) = min
s
d(N ; 1, s), d(N) = min

s
d(N ; 1, s).

Назовём оптимальным по диаметру граф C(N ; 1, s) с минимально воз-
можным для данного N диаметром d = d(N), оптимальным по среднему

расстоянию — граф C(N ; 1, s) с минимально возможным для данного N
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средним расстоянием d = d(N). Граф C(10; 1, 4) — пример графа, опти-
мального по диаметру и среднему расстоянию, при этом d = d(10) = 2,
d = d(10) = 1,4. Например, для графов C(10; 1, 2) и C(10; 1, 3) имеем
d = 3, d = 1,5.

В настоящей работе для класса двумерных кольцевых сетей C(N ; 1, s)
рассматривается решение оптимизационной проблемы поиска семейств
оптимальных по двум параметрам сетей (с минимально возможными од-
новременно диаметром и средним расстоянием) и получения применимо-
го для таких сетей эффективного алгоритма маршрутизации.

Для класса сетей C(N ; 1, s) авторами были ранее представлены в от-
крытом доступе датасет (база данных) оптимальных по диаметру графов
до N 6 50 000 вершин [11], а также полученные на его основе аналити-
чески описываемые семейства оптимальных графов [12]. В настоящей
работе путём полного перебора образующих для каждого испытуемого
N 6 4100 получен новый датасет оптимальных по среднему расстоянию
графов класса C(N ; 1, s). На основе анализа и сравнения этих двух дата-
сетов, а также рассмотрения свойств соотношений диаметра и среднего
расстояния, построена база данных идеальных графов — циркулянтных
сетей класса C(N ; 1, s) с минимально возможными одновременно диамет-
ром и средним расстоянием. Найдены аналитически задаваемые семей-
ства идеальных сетей, для которых применим масштабируемый по числу
узлов алгоритм маршрутизации сложности O(1).

1. Теоретические основы исследования

Известна [9] точная нижняя граница диаметра двумерных циркулян-
тов C(N ; s1, s2) для любого N > 5:

d(N) > D(N) = ⌈(−1 +
√
2N − 1)/2⌉.

Гипотеза Цвиели [13] предполагает, что для любого N имеет место верх-
няя оценка

d(N) 6 D(N) + 1,

которая подтверждена при N 6 6 · 106. Графы с d(N) = D(N) + 1 назы-
ваются субоптимальными. Большая часть работ в литературе посвяще-
на изучению диаметра циркулянтных графов, и известно немного работ
по исследованиям среднего расстояния циркулянтов и его соотношения
с диаметром.

В [14] показано, что нижняя граница среднего расстояния графов
C(N ; s1, s2) асимптотически стремится к

√
2N/3. В [15] получена нижняя

граница среднего расстояния двумерных циркулянтов:

d(N) = (N − 1)
√
2N − 1/3N.
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В [16] приведены некоторые соотношения между диаметром и средним
расстоянием в оптимальных графах C(N ; 1, s). Дан пример, когда опти-
мальный по диаметру граф хуже по среднему расстоянию графа с боль-
шим на единицу диаметром. Аналогичное свойство отмечено для цирку-
лянтных графов большей размерности k = 3, 4, 5.

Очевидно, что среднее расстояние, как показатель топологии сети
связи, зависит от числа вершин графа, находящихся на определённых
расстояниях (уровнях одинакового расстояния) от выделенной верши-
ны. В силу вершинной симметрии циркулянтов в качестве выделенной
рассматривается вершина с номером 0. Пусть ni обозначает число вер-
шин, находящихся на расстоянии i от 0, i ∈ 1, d, d— диаметр графа. Для
двумерных циркулянтов максимально возможное число вершин на i-м
уровне равно 4i [17, 18]. Циркулянт с полностью заполненными уров-
нями, включая диаметр, называется экстремальным. Семейство экстре-
мальных двумерных кольцевых циркулянтов существует при любом диа-
метре [9] и имеет вид {C(Nd; 1, 2d+1) | d > 1}, где Nd = 2d2+2d+1. При
этом среднее расстояние для графов экстремального семейства равно
d = (2d+1)/3 [15]. Исследованию распределения вершин графов по уров-
ням для семейств экстремальных (и наибольших известных) циркулян-
тов размерностей k = 2, 3, 4, 5 посвящена работа [19].

Введём понятие идеального оптимального графа C(N ; 1, s), следуя [5].
В идеальном оптимальном графе распределение вершин по уровням рас-
стояния относительно вершины 0 задаётся формулой

N = 1 +
d−1∑

i=1

ni + (N −Nd−1), ni = 4i, i ∈ 1, d − 1. (1)

Другими словами, для идеального циркулянта распределение числа вер-
шин по уровням расстояний от 0 до d можно представить в виде (d+1)-
мерного вектора (1, 4, 8, . . . , 4(d − 1), N − Nd−1). Следует отметить, что
впервые формула для среднего расстояния идеальных графов появилась
в работе [17]. Из принадлежности графа к множеству идеальных сле-
дует равенство его диаметра точной нижней границе D(N). Идеальные
графы достигают минимумов структурных задержек и максимума связ-
ности [17, 20].

В работе [5] в диапазоне 5 6 N 6 1000 найден 361 идеальный граф
и проведён анализ полученного множества идеальных графов. Полу-
чено несколько семейств идеальных графов, описываемых полиномами
от диаметра:

N ∈ {2d2; 2d2 ± 1; 2d2 + 2d− 1}, s = 2d− 1, d > 1;

N = 2d2 − 2d+ 5, d > 5, (2)
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s =

®
(2d2 − 4d)/3 + 2 при d = 3i, i > 2,

(2d2 + 4)/3 при d = 3i+ 1, i > 2.
(3)

Формулу (3) для образующей s последнего семейства авторы [5] найти
не смогли, при этом указали формулу (2) для N и для всех семейств
вычислили среднее расстояние в виде функции от диаметра. Исправляя
неточность в [5], приводим выражение среднего расстояния для семей-
ства (2), (3):

d(N ; 1, s) = d(2d2 − 3d+ 7)/(3(d2 − d+ 2)), d > 5.

Для других идеальных графов авторы [5] отмечают, что не нашли общего
способа их построения.

В разд. 2 дано решение этого вопроса, а также построены новые ба-
зы данных — оптимальных по среднему расстоянию циркулянтов и иде-
альных графов. В разд. 3 приведены результаты получения большого
количества семейств идеальных оптимальных графов C(N ; 1, s) с по-
рядками и образующими, описанными в виде полиномов от диаметра,
а также дана общая формула для среднего расстояния в графах иде-
альных семейств. В разд. 4 среди семейств идеальных графов найдены
масштабируемые семейства, для которых применим оптимальный алго-
ритм маршрутизации, использующий параметры укладки циркулянтов
на плоскости.

2. Новые датасеты оптимальных циркулянтов

В Интернете можно найти датасет оптимальных циркулянтов раз-
мерностей k = 2, 3, 4, 5 порядков 10 6 N 6 500 [21], в котором для
каждого N приведён один набор образующих при s1 = 1. Полученный
авторами и представленный в открытом доступе [11] датасет оптималь-
ных по диаметру циркулянтов C(N ; 1, s) размерности k = 2 порядков
10 6 N 6 50 000 включает уже весь набор образующих оптимальных
графов, что позволяет находить семейства оптимальных по диаметру
циркулянтных графов, описанных полиномами от диаметра [12]. В на-
стоящей работе продолжен поиск и исследование наилучших возможных
графов класса C(N ; 1, s).

Найдено аналитическое выражение для среднего расстояния идеаль-
ного графа C(N ; 1, s), используемое далее при получении множеств (се-
мейств) идеальных графов. Эта же формула является нижней границей
среднего расстояния в графах C(N ; 1, s) при Nd−1 < N 6 Nd. Из опреде-
ления идеального графа C(N ; 1, s) с числом вершин N, где d(N) = D(N),
следует равенство

D(N) = d(N) = d(3N − 2d2 − 1)/(3(N − 1)), (4)
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которое является необходимым и достаточным условием того, что дву-
мерный кольцевой циркулянт с числом вершин N и диаметром d = D(N)
является идеальным графом. Тем самым обобщён результат из [5] и най-
дена в общем виде формула среднего расстояния идеального графа, по-
этому при проверке на принадлежность графа к множеству идеальных
достаточно проверять выполнение (4). Формулу (4) можно использовать
также для аналитического определения среднего расстояния в графах се-
мейств идеальных графов в случае, если порядок N графов идеального
семейства описан как функция от диаметра d.

Результатом представленной работы являются два новых датасета оп-
тимальных графов C(N ; 1, s):

1) MPLset — параметры оптимальных по среднему расстоянию гра-
фов;

2) IDset — параметры идеальных графов.
Для вычислений используется система Wolfram Mathematica. Отметим,
что также можно использовать систему Wolfram Engine — свободно рас-
пространяемую альтернативу Wolfram Mathematica с урезанным графи-
ческим интерфейсом.

Алгоритм построения датасета MPLset сводится к полному перебору
образующих 2 6 s < N/2 для каждого испытуемого порядка N 6 4100
и формированию описаний всех графов с минимально возможным для

Рис. 2. Параметры графов C(N ; 1, s) из датасета MPLset
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данного N средним расстоянием:

MPLset =
{
(N, s) ∈ N | d(N) = min

26s<N/2
d(N ; 1, s), N 6 4100

}
.

Для повышения скорости вычислений проведено их распараллеливание
по наборам образующих.

Датасет IDset идеальных графов строится перебором и поиском гра-
фов из множества MPLset, удовлетворяющих условию идеальности (1).
Для найденных графов также проведена проверка равенства среднего
расстояния нижней границе (4).

На рис. 2 и 3 представлены трёхмерные графики полученных дата-
сетов точек (N, s, d, d) при 10 6 N 6 4100, отражающие параметры оп-
тимальных по среднему расстоянию и идеальных графов. Для каждого
значения N на графиках показаны все образующие s < N/2, опреде-
ляющие оптимальный граф. Датасеты найденных оптимальных графов
с числом вершин N 6 4100 доступны по ссылке [11].

На рис. 4 изображены графики зависимостей диаметра d и среднего
расстояния d от порядка N для графов из датасета MPLset — циркулян-
тов C(N ; 1, s) с минимально возможным средним расстоянием.

Рис. 3. Параметры идеальных графов C(N ; 1, s) из датасета IDset



Поиск и исследование идеальных циркулянтных сетей 105

Рис. 4. Зависимости диаметра и среднего расстояния от порядка графа
для датасета MPLset

На основе анализа найденных графов можно отметить следующие со-
отношения свойств оптимальных графов трёх видов.

1. Не для всех N достигаются нижние границы диаметра и среднего
расстояния в классе циркулянтов C(N ; 1, s).

2. Существуют субоптимальные и оптимальные по диаметру графы
с одинаковым средним расстоянием. Например, d(30; 1, 8) = D(30) = 4,
d(30; 1, 6) = 5. Векторы распределения вершин по уровням: (1, 4, 8, 9, 8)
для s = 8 и (1, 4, 8, 10, 6, 1) для s = 6, при этом для обоих графов имеем
d = 2,6333.

3. При одинаковом d = D(N) + 1 различные распределения вершин
по уровням могут давать одинаковое среднее расстояние. Например, не-
изоморфные субоптимальные графы C(30; 1, 4) и C(30; 1, 7) имеют оди-
наковые диаметр d = 5 и среднее расстояние d = 2,7, а векторы распре-
деления по уровням равны (1, 4, 8, 8, 8, 1) и (1, 4, 8, 9, 6, 2) соответственно.

4. Диаметр графа с минимальным средним расстоянием может пре-
вышать нижнюю границу для диаметра на 3 (на рис. 4 этот случай отме-
чен крупной точкой). Так, оптимальный по среднему расстоянию граф
C(1798; 1, 762) имеет d = 33 и d = d(1798) = 20,01 в отличие от опти-
мального по диаметру графа C(1798; 1, 544), у которого d = d(1798) =
D(1798) = 30 и d = 20,02.

5. Только идеальные циркулянты достигают одновременно нижних
границ диаметра D(N) и среднего расстояния D(N).
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Среди 8499 графов датасета MPLset с 5 6 N 6 4100 идеальными
оказались 7955 (более 93%). Отметим, что для 5 6 N 6 1000 число иде-
альных графов равно 911, что существенно больше, чем 361 идеальный
граф, найденный ранее в [5].

3. Экспериментальные результаты поиска

семейств идеальных сетей

Дадим сначала общую формулировку понятия семейства оптималь-
ных графов в классе C(N ; 1, s). Под семейством оптимальных (идеаль-
ных) сетей будем понимать подмножество оптимальных (идеальных) гра-
фов класса C(N ; 1, s) с общим аналитическим описанием N = N(d)
и s = s(d) и диаметром, растущим по правилу d = dm + kP, где k > 0,
dm — минимальный диаметр, при котором граф семейства является опти-
мальным (идеальным), P = const ∈ N— период повторяемости, равный
разности диаметров «соседних» графов семейства.

На первом этапе поиска семейств идеальных сетей к графам датасета
MPLset, оптимальных по среднему расстоянию, применены алгоритмы
автоматизированного поиска аналитически описываемых семейств [12].
Порядки найденных семейств графов представляют собой квадратичные
полиномы, а их образующие — квадратичные или линейные полиномы
от диаметра d. Полученные семейства графов существуют в соответству-
ющих диапазонах изменения диаметра d. Затем проверено существова-
ние найденных семейств при диаметрах больших, чем диаметры графов
датасета MPLset (при 4100 < N 6 50 000). Для этого этапа использована
программа анализа структурных характеристик циркулянтных графов,
которая дополнительно находит векторы распределения вершин по уров-
ням. На заключительном этапе графы оставшихся семейств проверены
на выполнение равенства (4). В результате осталось 1756 семейств иде-
альных сетей, список которых также помещён в [11].

4. Идеальные циркулянтные сети

и оптимальный алгоритм маршрутизации

В [22] на основе датасета оптимальных по диаметру графов C(N ; 1, s)
получено множество семейств оптимальных графов, для которых допол-
нительно разработан эффективный оптимальный алгоритм маршрутиза-
ции [22] сложности O(1), не требующий таблиц маршрутизации и исполь-
зующий параметры плотной укладки циркулянтов на плоскости в виде
L-образных шаблонов (L-shapes) [18, 23, 24]. Параметры a, b, p, q L-образ-
ных шаблонов для циркулянтов C(N ; 1, s) показаны на рис. 5a. На рис. 5б
изображена плотная укладка на плоскости L-образного шаблона для гра-
фа C(10; 1, 4) с параметрами a = 4, b = 3, p = 2, q = 1.
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Рис. 5. a) Параметры L-образного шаблона; б) плотная укладка
L-образного шаблона на плоскости для графа C(10; 1, 4)

В [23] доказано, что L-образный шаблон циркулянтов C(N ; s1, s2) все-
гда образует плотную укладку на плоскости, и получена следующая ба-
зовая система сравнений для расположения нулей (вершин с номером 0)
на плоскости:

as1 − qs2 ≡ 0 (mod N),

−ps1 + bs2 ≡ 0 (mod N).
(5)

В [22] введено понятие L-масштабируемости аналитически описан-
ных семейств оптимальных графов, которое будем использовать далее
при анализе множества полученных семейств идеальных сетей. Семей-
ство C(N(d); 1, s(d)) L-масштабируемо, если существуют функции a(d),
b(d), p(d), q(d), описывающие параметры L-образных шаблонов плот-
ной укладки графов семейства на плоскости, для которых выполняется
система сравнений (5). L-масштабируемость семейств графов позволяет
определить параметры a, b, p, q укладки графов семейств в виде линей-
ных полиномов от диаметра, тем самым сокращая сложность алгоритмов
их определения с O(N) [18] (или O(logN) [24]) до O(1).

С использованием системы Wolfram Mathematica авторами проведе-
на проверка выполнения сравнений (5) для идеальных семейств, взятых
из датасета IDset с параметрами N, s, a, b, p, q, описанными в виде по-
линомов от диаметра. После проверки, проведённой на всём множестве
идеальных семейств, найдено 869 описаний L-масштабируемых идеаль-
ных семейств, список которых дан в соответствующем разделе датасе-
та [11]. Для этих семейств применим алгоритм маршрутизации из [22]
с аналитическим определением параметров L-образных шаблонов. Ни-
же приведён фрагмент описаний семейств, существующих для каждого
диаметра d > dm. Список включает для представленных семейств значе-
ния dm, период повторяемости P, полиномы для N и s, коэффициенты
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Рис. 6. Точки датасета L-масштабируемых идеальных семейств (чёрные)
и датасета IDset идеальных циркулянтных графов (зелёные точки)

при степенях d для параметров a, b, p, q. На рис. 6 показан трёхмерный
график датасета точек (N, s, d), 10 6 N 6 4100, полученных по описа-
ниям L-масштабируемых идеальных семейств (чёрные точки) на фоне
датасета всех идеальных графов (зелёные точки). Здесь N — число вер-
шин графа, s— образующая, d— диаметр, d— среднее расстояние графа
C(N ; 1, s).

Фрагмент датасета семейств идеальных графов с аналитическим опи-
санием и масштабируемыми параметрами L-образных шаблонов в фор-
мате {dm, P = 1, {N, s}, {{a1, a0}, {b1, b0}, {p1, p0}, {q1, q0}}}:

{2, 1, {1 + 2d+ 2d2, 1 + 2d}, {{2, 1}, {1, 1}, {1, 0}, {0, 1}}},
{3, 1, {2d2 ,−1 + 2d}, {{2,−1}, {1, 1}, {1,−1}, {0, 1}}},
{3, 1, {2d2, 1 + 2d}, {{1, 0}, {3,−1}, {1,−1}, {1, 0}}},

{3, 1, {−1 + 2d2,−1 + 2d}, {{2,−1}, {1, 1}, {1, 0}, {0, 1}}},
{3, 1, {−1 + 2d2, 1 + 2d}, {{1, 1}, {2,−1}, {0, 1}, {1, 0}}},
{3, 1, {1 + 2d2,−1 + 2d}, {{2,−1}, {1, 1}, {1,−2}, {0, 1}}},
{3, 1, {1 + 2d2, 1 + 2d}, {{2, 1}, {1, 0}, {1,−1}, {0, 1}}},
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{2, 1, {d + 2d2, 2d}, {{2, 0}, {1, 1}, {1, 0}, {0, 1}}},
{3, 1, {−1 − d+ 2d2,−2 + 2d}, {{2,−2}, {1, 1}, {1,−1}, {0, 1}}},

{3, 1, {−d + 2d2, 2d}, {{1, 0}, {2,−1}, {0, 0}, {1, 0}}},
{3, 1, {−d + 2d2,−2 + 2d}, {{2,−2}, {1, 1}, {1,−2}, {0, 1}}},
{3, 1, {1 − d+ 2d2, 2d}, {{2, 0}, {1, 0}, {1,−1}, {0, 1}}},

{3, 1, {−3 + d+ 2d2,−2 + 2d}, {{2,−2}, {1, 2}, {1,−1}, {0, 1}}},
{3, 1, {−2 + d+ 2d2,−2 + 2d}, {{2,−2}, {1, 2}, {1,−2}, {0, 1}}}.

Интересно отметить, что оптимальный граф C(10; 1, 4), изображён-
ный на рис. 1, идеальный и принадлежит семейству {C(2d2 + d; 1, 2d) |
d > 2}. Более того, это семейство L-масштабируемо, что покажем далее.

Лемма 1. Параметры L-образных шаблонов для семейства опти-

мальных циркулянтов C(2d2+d; 1, 2d), где d > 2, равны a = 2d, b = d+1,
p = d, q = 1.

Доказательство. Достаточно показать, что базовая система срав-
нений (5) для расположения нулевых вершин на плоскости выполняется
для указанных параметров при любом d > 2. Имеем

2d− 2d = 0 ≡ 0 (mod N),

−d+ (d+ 1)2d = 2d2 + d = N ≡ 0 (mod N).

Лемма 1 доказана.

Покажем, что семейство идеальных графов (2), (3) также L-масшта-
бируемо.

Лемма 2. Параметры L-образных шаблонов для семейства опти-

мальных циркулянтов C(2d2 − 2d+ 5; 1, s) с образующей

s =

®
(2d2 − 4d)/3 + 2 при d = 3i,

(2d2 + 4)/3 при d = 3i+ 1,

где d > 5, равны®
a = d+ 1, b = 2d− 1, p = 3, q = d− 2 при d = 3i,

a = 2d− 1, b = d+ 1, p = d− 2, q = 3 при d = 3i+ 1.

Доказательство. Покажем, что базовая система сравнений (5) вы-
полняется для указанных параметров при d > 5.

Если d = 3i, i > 2, имеем

(d+ 1)− (d− 2)((2d2 − 4d)/3 + 2) = (1− d/3)N ≡ 0 (mod N),

−3 + (2d − 1)((2d2 − 4d)/3 + 2) = (2d/3 − 1)N ≡ 0 (mod N).



110 Э. А. Монахова, О. Г. Монахов

Аналогично, если d = 3i+ 1, i > 2, имеем

(2d− 1)− 3(2d2 + 4)/3 = −N ≡ 0 (mod N),

−(d− 2) + (d+ 1)(2d2 + 4)/3 = ((d+ 2)/3)N ≡ 0 (mod N).

Лемма 2 доказана.

Таким образом, ко всем графам семейств из лемм 1 и 2, а также всех
найденных идеальных L-масштабируемых семейств может быть приме-
нён оптимальный алгоритм маршрутизации из [22]. В отличие от ряда
других алгоритмов поиска кратчайших путей, использующих плотную
укладку графов на плоскости [25, 26], указанный алгоритм использует
минимальное число (пять) соседних нулей, при этом затрачивает мень-
шее число операций при расчёте кратчайшего пути по сравнению с ал-
горитмом из [27]. Продемонстрируем работу алгоритма маршрутизации
на примере графов идеального семейства из леммы 2. Ниже запись вида
a1[+1] + b1[+s] означает, что путь из 0 в вершину i содержит a1 шагов
по образующей s1 = 1 и b1 шагов по образующей s. Знаки a1 и b1 опреде-
ляют направление движения: в направлении образующей (+) или против
образующей (−).

Пример 1. В качестве топологии рассмотрим граф C(65; 1, 18) се-
мейства (2), (3) диаметра d = 6. Пусть требуется вычислить кратчай-
ший путь из 0 в вершину i = 50. Имеем a = 7, b = 11, p = 3, q = 4,
u = a− p = 4, v = b− q = 7.

Шаг 1. a0 = 7, b0 = 4.
Шаг 2. (a1, b1) = (50, 0) − round

(
1
65 (50, 0)

(
4 −7
7 4

))(
4 7
−7 4

)
= (3,−1).

Шаг 3. P1 = (3)[+1] + (−1)[+18]; P2 = (−1)[+1] + (−8)[+18]; P3 =
(10)[+1] + (−5)[+18]; P4 = (7)[+1] + (6)[+18]; P5 = (−4)[+1] + (3)[+18].
Кратчайший из пяти путей в вершину i = 50 есть P ′ = P1.

Пример 2. Рассмотрим граф C(89; 1, 34) семейства (2), (3) диаметра
d = 7. Требуется вычислить кратчайший путь из 0 в вершину i = 6.
Имеем a = 13, b = 8, p = 5, q = 3, u = a− p = 8, v = b− q = 5.

Шаг 1. a0 = 5, b0 = 8.
Шаг 2. (a1, b1) = (6, 0) − round

(
1
89(6, 0)

(
8 −5
5 8

))(
8 5
−5 8

)
= (−2,−5).

Шаг 3. P1 = (−2)[+1]+(−5)[+34]; P2 = (−10)[+1]+(−10)[+34]; P3 =
(3)[+1] + (−13)[+34]; P4 = (6)[+1] + (0)[+34]; P5 = (−7)[+1] + (3)[+34].
Кратчайший из пяти путей в вершину i = 6 есть P ′ = P4.

Таким образом, графы из найденных в настоящей работе семейств
идеальных циркулянтных сетей обладают не только минимально воз-
можными структурными задержками при межузловых обменах, но и эф-
фективной организацией маршрутизации. Вопросы полноты множества
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семейств идеальных графов C(N ; 1, s) на основе полученных датасетов
являются темой для будущих исследований.

Заключение

В данной работе продолжены исследования, начатые в цикле статей
по генерации датасетов оптимальных кольцевых циркулянтных сетей
степени четыре. Проектирование оптимальных сетевых топологий, об-
ладающих симметрией связей и минимальными структурными задерж-
ками при межузловых обменах, является одним из основных критериев
при разработке сетей на кристалле. На основе анализа больших массивов
экспериментальных данных нами исследовано решение проблемы поиска
двумерных кольцевых циркулянтных сетей, оптимальных по двум пара-
метрам — диаметру и среднему расстоянию. Получены и представлены
в открытом доступе новые датасеты рассматриваемых сетей - оптималь-
ных по среднему расстоянию и наилучших возможных по двум парамет-
рам так называемых идеальных сетей. Существенно расширено исследо-
вание свойств идеальных циркулянтных сетей, что позволило открыть
множество аналитически задаваемых семейств идеальных циркулянт-
ных сетей. Для таких семейств идеальных сетей применим эффектив-
ный, масштабируемый по числу узлов алгоритм маршрутизации слож-
ности O(1). Нахождение аналитическими вычислениями оптимальных
топологий с симметричной структурой построения подсистемы связей
и минимальными задержками гарантирует простоту инженерных реше-
ний и повышение эффективности функционирования сетей на кристалле
при обменах.
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SEARCH AND RESEARCH OF IDEAL TWO-DIMENSIONAL
CIRCULANT NETWORKS BASED ON GRAPH DATABASES
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Abstract. Based on analysis of large arrays of experimental data, the
problem of finding ideal two-dimensional ring circulant networks op-
timal with respect to two parameters, diameter and average distance,
is investigated. Previously, the authors obtained a large dataset (data-
base) of two-dimensional ring circulant networks that are optimal with
respect to diameter. In this paper, a new dataset of the considered net-
works that are optimal with respect to average distance is obtained.
The study of the graphs of these datasets allowed us to derive new
properties of the ratios of diameter and average distance in optimal cir-
culants and to obtain families of the best optimal circulant networks
with respect to two parameters, for which an efficient routing algorithm
of constant complexity, adjustable by the number of nodes, is applica-
ble. Ideal two-dimensional ring circulants are of interest as efficient and
reliable topologies for inter-node connections in networks on a chip and
information and communication systems. Illustr. 6, bibliogr. 27.

Keywords: undirected double loop network, diameter, mean distance,
dataset of optimal circulant networks, routing algorithm.
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