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О БЛИЖАЙШИХ БЕНТ-ФУНКЦИЯХ К ЗАДАННОЙ
БЕНТ-ФУНКЦИИ МЭЙОРАНА — МАКФАРЛАНДА

Д. А. Быков a , Н. А. Коломеец b

Новосибирский гос. университет,
ул. Пирогова, 2, 630090 Новосибирск, Россия

E-mail: a den.bykov.2000i@gmail.com, b nkolomeec@gmail.com

Аннотация. Исследуются бент-функции от 2n переменных, бли-
жайшие к заданной функции из класса Мэйорана — МакФарланда.
Переформулирован критерий расположения таких бент-функций,
и уточнён метод подсчёта их числа. Исследованы функции с числом
ближайших бент-функций, близким к его нижней и точной верхней
оценкам. Доказано существование бент-функций, у которых число
ближайших бент-функций имеет ту же асимптотику, что и ниж-
няя оценка. Приведены примеры функций из класса Мэйорана —
МакФарланда, для которых рассчитанное число ближайших бент-
функций близко к верхней оценке. Рассматривается также дости-
жимость нижней оценки, а именно, усилены известные необходимые
и достаточные условия. Показано, что нижняя оценка достигается
при n, равном степени простого числа p > 5, а также при неко-
торых других n. Приведена полная классификация функций от 6
переменных из класса Мэйорана — МакФарланда по числу ближай-
ших бент-функций. Табл. 1, библиогр. 40.

Ключевые слова: бент-функция, булева функция, аффинное под-
пространство, минимальное расстояние, класс Мэйорана — МакФар-
ланда.

Введение

Бент-функции — булевы функции от чётного числа переменных, об-
ладающие максимальной нелинейностью — впервые введены в рассмот-
рение в 1960-x гг. Их название появилось в работе Ротхауса [1], а в СССР
В. А. Елисеев и О. П. Степченков называли их минимальными [2]. Бент-
функции интересны своими приложениями в криптографии, алгебре,
теории кодирования, теории символьных последовательностей и т. д.
О них написаны обзоры и книги [2–7], а общую информацию о крип-
тографических свойствах булевых функций можно найти в [8–14].

© Д. А. Быков, Н. А. Коломеец, 2025
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В данной работе рассматриваются метрические свойства бент-функ-
ций, а именно бент-функции, ближайшие относительно метрики Хэм-
минга к некоторой заданной бент-функции из класса Мэйорана — Мак-
Фарланда M2n от 2n переменных, который независимо ввели Мэйорана
и МакФарланд, аналогичную конструкцию предложил также В. А. Ели-
сеев (см. [2, 15]). Этот класс состоит из бент-функций вида

fπ,ϕ(x, y) = 〈x, π(y)〉 ⊕ ϕ(y), x, y ∈ Fn
2 ,

где π— подстановка на Fn
2 , ϕ : F

n
2 → F2, и наряду с классом PS [16] яв-

ляется одной из базовых конструкций бент-функций. Известно [17], что
все ближайшие к fπ,ϕ бент-функции находятся на расстоянии 2n и имеют
вид

fπ,ϕ ⊕ IndL, L ∈ LAn(fπ,ϕ), (1)

где LAn(fπ,ϕ)— множество всех аффинных подпространств L ⊆ F2n
2 раз-

мерности n, на которых fπ,ϕ аффинна. Конструкция (1), впервые опи-
санная в [16] и применимая к любой бент-функции, позволяет строить
бент-функции разных классов, поэтому она интересна и вне метриче-
ских свойств. На её основе построен класс D [18], выходящий за пре-
делы замыканий M2n и PS относительно EA-эквивалентности [18–20].
Свойства схожей с (1) конструкции для аффинных подпространств L
произвольной размерности рассматривались в [18, 21–24], а построение
бент-функций, не принадлежащих замыканию M2n, исследовалось так-
же в [25–27]. Таким образом, мощность LAn(fπ,ϕ) характеризует как раз-
мер минимальной окрестности fπ,ϕ (метрические свойства), так и число
бент-функций, порождаемых конструкцией (1).

Для |LAn(fπ,ϕ)| справедливы оценки

ℓ2n = 22n+1 − 2n 6 |LAn(fπ,ϕ)| 6 2n(21 + 1)(22 + 1) . . . (2n + 1) = U2n.
Верхняя оценка U2n верна для произвольной бент-функции и точна: она
достигается на всех квадратичных бент-функциях и только на них [29].
Нижняя оценка ℓ2n впервые представлена в [28], она тесно связана и с пе-
ресечениями классов: все учтённые в ней бент-функции лежат в M2n,
а все неучтённые — вне его [29]. Таким образом, её достижимость влечёт
отсутствие ближайших к fπ,ϕ бент-функций за пределамиM2n. Этот во-
прос исследуется в [30], где показано, что ℓ2n достижима при простых
n > 5. В то же время, для равенства |LAn(fπ,ϕ)| = ℓ2n необходимо,
чтобы π была APN-подстановкой [31]. Однако вопрос существования та-
ких подстановок при чётных n > 8 является открытым (the big APN
problem) [32].

В рамках данной работы мы предлагаем ещё одну формулировку кри-
терия для L ∈ LAn(fπ,ϕ) в конструкции (1), используя отличное от [30]
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представление аффинных подпространств Fn
2×Fn

2 , и демонстрируем под-
счёт |LAn(fπ,ϕ)| для некоторых fπ,ϕ.Например, все функции изM6 клас-
сифицированы по значению |LA3(fπ,ϕ)|. Результаты позволяют усилить
как необходимое, так и достаточное условия достижимости ℓ2n, а также
выделить бент-функции с близким к ℓ2n или U2n размером LAn(fπ,ϕ),
для которых при n→∞ имеет место одно из равенств

|LAn(fπ,ϕ)| = ℓ2n + o(ℓ2n), |LAn(fπ,ϕ)| =
1

3
U2n + o(U2n).

Поскольку любая бент-функция fπ,ϕ ∈ M2n «собрана» из 2n аффинных
ограничений на Fn

2 × {y} для y ∈ Fn
2 , функции с |LAn(fπ,ϕ)|, близким

к U2n (ℓ2n), можно считать наиболее «простыми» («сложными»).
Структура работы следующая. В разд. 1 приводятся необходимые

определения. В разд. 2 переформулирован критерий из [30] располо-
жения ближайших бент-функций к fπ,ϕ ∈ M2n в более удобном для
вычисления их числа виде (теорема 1). Отличие состоит в представ-
лении аффинных подпространств Fn

2 × Fn
2 , основанном на их пересе-

чении с Fn
2 × {0}n и проекции на {0}n × Fn

2 (см. п. 2.1), и использо-
вании специального линейного оператора GLπ (Gπ) (п. 2.2), через образ
и размер ядра которого выражается число ближайших к fπ,ϕ бент-функ-
ций (следствие 1, см. также теорему 3). Его удобство обусловлено воз-
можностью до определённой степени отделить свойства π от свойств ϕ.
Важно, что допускается представление fπ,ϕ как над Fn

2 × Fn
2 , так и над

F2n × F2n : во всех ключевых теоремах предполагается, что fπ,ϕ(x, y) =
〈x, π(y)〉n ⊕ ϕ(y), где 〈·, ·〉n — произвольная невырожденная симметрич-
ная билинейная форма на Fn

2 . Доказанная в п. 2.3 теорема 2 упрощает
работу с GLπ с помощью перехода к «естественной» билинейной форме,
определённой на FdimL

2 × FdimL
2 .

В разд. 3 найдены мощность ядра и образ оператора Gπ для некото-
рых подстановок π: аффинных, зависящих от не более чем трёх перемен-
ных (п. 3.1), а также для функции инверсии элементов F2n (п. 3.2). Все
полученные далее утверждения и теоремы демонстрируют применение
результатов из разд. 2 и 3 к конкретным бент-функциям fπ,ϕ.

В разд. 4 изучается достижимость нижней оценки ℓ2n числа ближай-
ших к fπ,ϕ бент-функций, для этого уточнена общая формула подсчёта
их числа (теорема 3). Данная теорема позволила получить как следствие
усиление результата [30] о необходимости для π быть APN-подстановкой
при |LAn(fπ,ϕ)| = ℓ2n: L и его образ π(L) не должны быть одновременно
аффинными подпространствами Fn

2 размерности 3 (следствие 2). Усиле-
но и достаточное условие достижимости ℓ2n из [30]: доказано, что оценка
гарантированно достигается не только при простых n > 5, но и при лю-
бых степенях таких простых чисел (теорема 4 и следствие 3).
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В разд. 5 теорема 3 применяется для подсчёта числа ближайших
к fπ,ϕ бент-функций, близкого к его нижней ℓ2n или верхней U2n оцен-
кам. В п. 5.1 доказано существование функции fπ,ϕ ∈ M2n, для которой
|LAn(fπ,ϕ)| < 22n+1+81 ·2n−82, причём неравенство превращается в ра-
венство ℓ2n+ o(ℓ2n) при n→∞ (теорема 5). Следствием является дости-
жимость оценки ℓ2n при некоторых других n (следствие 5). В качестве π
здесь используется функция инверсии элементов F2n .

В п. 5.2 для fϕ(x, y) = 〈x, y〉 ⊕ ϕ(y) приведена формула мощности
LAn(fϕ), использующая нетривиальные параметры ϕ (следствие 6). Да-
лее для ϕm(y1, . . . , yn) = y1 . . . ym, где 3 6 m 6 n дано явное выражение
для |LAn(fϕm)| (следствие 7, см. также утверждение 11 и замечание 4
о расширении класса функций ϕ). В случаях m = 3 и m = n получены
краткие формулы, по виду близкие к оценке U2n; из них следует, что при
n→∞ величина |LAn(fϕm)| имеет порядок o(U2n) и 1

3U2n + o(U2n) соот-
ветственно (следствие 8). Показано также, что бент-функция fτ , постро-
енная с помощью транспозиции τ : Fn

2 → Fn
2 и тождественно нулевой ϕ,

имеет |LAn(fτ )| = |LAn(fϕn)| (утверждение 12 и замечание 5). Выдви-
нута гипотеза, что это максимальное возможное число ближайших бент-
функций для неквадратичной бент-функции (гипотеза 1).

В разд. 6 показано, что из теоремы 3 следует классификация всех
f ∈ M6 по мощности LA3(f), которая в данном случае является полным
инвариантом относительно EA-эквивалентности (теорема 6).

1. Определения

1.1. Булевы функции. Пусть F2k — конечное поле, состоящее из 2k

элементов, и Fn
2 = {(x1, x2, . . . , xn) | x1, . . . , xn ∈ F2}— векторное про-

странство размерности n над полем F2, сложение в котором обозначено
через ⊕. Функция f : Fn

2 → F2 называется булевой функцией от n пере-
менных. Функция F : Fn

2 → Fm
2 называется векторной булевой функцией

и представляет собой упорядоченный набор m булевых функций от n пе-
ременных, каждая из которых называется координатной, а их нетриви-
альная линейная комбинация — компонентной функцией. Булевы функ-
ции будем рассматривать в том числе как частный случай векторных
булевых функций.

Любая векторная булева функция F : Fn
2 → Fm

2 единственным образом
представляется в виде полинома Жегалкина (алгебраической нормаль-
ной формы, АНФ):

F (x1, x2, . . . , xn) =
⊕

a∈Fn
2

gax
a1
1 x

a2
2 . . . xann , ga ∈ Fm

2 , 0
0 = 1. (2)

Степенью векторной булевой функции называется степень её полино-
ма Жегалкина. Функция F линейная, если F (x ⊕ y) = F (x) ⊕ F (y) для
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всех x, y ∈ Fn
2 . Прибавляя константу из Fm

2 к линейным функциям, полу-
чим множество аффинных функций (функций степени не более 1). Образ

множества S ⊆ Fn
2 будем обозначать через F (S) = {F (s) | s ∈ S}.

Производной F по направлению a ∈ Fn
2 называется векторная булева

функция DaF (x) = F (x) ⊕ F (x ⊕ a). Порядком дифференциальной рав-

номерности δ(F ) называется минимальное t, для которого при любых
параметрах a ∈ Fn

2 \ {0} и b ∈ Fm
2 уравнение F (x) ⊕ F (x ⊕ a) = b имеет

не более t решений. При n = m функции с δ(F ) = 2 называются APN-
функциями, а взаимно однозначные APN-функции — APN-подстановка-

ми.
Расстояние Хэмминга между булевыми функциями f, g : Fn

2 → F2
равно числу векторов, на которых их значения различаются. Вес Хэм-

минга wt(f) функции (вектора x ∈ Fn
2 ) — число векторов (координат)

со значением 1. Булева функция называется уравновешенной, если она
принимает значения 0 и 1 на одинаковом числе векторов.

Функции f и g EA-эквивалентны, если f(x) = g(A(x)) ⊕ h(x) для
всех x ∈ Fn

2 , где A : Fn
2 → Fn

2 — обратимое аффинное преобразование
и h : Fn

2 → F2 аффинна. Функция f при чётном n называется бент-функ-

цией, если она находится на максимальном расстоянии от множества всех
аффинных булевых функций. Множество всех бент-функций замкнуто
относительно EA-эквивалентности.

Обратим внимание, что большинство приводимых определений и фак-
тов можно найти в [8].

1.2. Подпространства и ограничения функций. Линейным под-

пространством Fn
2 называется непустое подмножество L ⊆ Fn

2 такое,
что для любых x, y ∈ L выполнено x ⊕ y ∈ L. Для a ∈ Fn

2 множество
U = a⊕L = {a⊕x | x ∈ L} называется аффинным подпространством Fn

2 .
Положим [U ] = L = a⊕ U. Размерность аффинного подпространства U
полагаем равной dimU = dim[U ]. Множества всех линейных и аффин-
ных подпространств Fn

2 размерности k обозначим через Skn и ASkn соот-
ветственно.

Ограничением функции F : Fn
2 → Fm

2 на множество S ⊆ Fn
2 называется

F |S : S → Fm
2 такая, что F |S(y) = F (y) для всех y ∈ S.

Пусть U и V — аффинные подпространства Fn
2 и Fm

2 соответственно.
Функция A : U → V называется аффинной, если A = A′|U для некоторой
аффинной функции A′ : Fn

2 → Fm
2 . Через [A] обозначим любую линей-

ную функцию вида Fn
2 → Fm

2 такую, что A = [A]|U ⊕ const. Например,
подходящей является [A] = A′ ⊕A′(0). Введём следующие обозначения:
• AV

U = {f : U → V | f аффинна}— множество всех аффинных функ-
ций из U в V ;

• AV
n = AV

Fn
2

и Ak
U = AFk

2
U ; в булевом случае An = A1

n и AU = A1
U .
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Введём в рассмотрение также следующие фактор-пространства.
• ‹FU = FU/AU , где FU = {f : U → F2}, Fn = FFn

2
. Соответствующее

отношение эквивалентности обозначим через ≃, так что f ≃ g тогда
и только тогда, когда f ⊕ g ∈ AU , где f, g ∈ FU .

• An
U/AV

U , где V ⊆ Fn
2 — линейное подпространство. Соответствующее

отношение эквивалентности обозначим через
V
=, так что F

V
= G тогда

и только тогда, когда F ⊕G ∈ AV
U , где F,G ∈ An

U
С целью упрощения записи будем считать, что для f ∈ FU также

имеет место f ∈ ‹FU (аналогично F ∈ An
U и F ∈ An

U/AV
U ), а для равенства

в фактор-пространстве используем символ эквивалентности.
Характеристическую функцию множества S обозначим через IndS ,

где S может быть как подмножеством Fn
2 , так и ‹FU .

1.3. Алгебраическое представление булевых функций. Функ-
цию F : Fn

2 → Fn
2 можно также рассмотреть как функцию F : F2n → F2n ,

зафиксировав некоторый базис F2n над F2. Многие свойства, например,
алгебраическая степень, нахождение функций на определённом рассто-
янии, свойство быть бент-функцией и т. д., не зависят от выбора базиса.
Любую такую функцию F можно однозначно представить в виде поли-
нома над полем:

F (x) =

2n−1∑

i=0

δix
i, δ0, . . . , δ2n−1 ∈ F2n .

Степень функции, отличной от константы 0, можно найти по формуле

degF = max
i∈{0,...,2n−1} : δi 6=0

wt(i(2)),

где i(2) ∈ Fn
2 — вектор двоичной записи i. Таким образом, аффинными

являются функции следующего вида:

x 7→ α0x
20 + α1x

21 + · · · + αn−1x
2n−1

+ αn, где α0, . . . , αn ∈ F2n .

Булеву функцию можно представить как trn1 (F (x)), где

trn1 (x) = x2
0
+ x2

1
+ · · · + x2

n−1
, x ∈ F2n .

Это линейная функция, значения которой лежат в F2. Будем пользовать-
ся следующими связанными с ней свойствами:

trn1 (x
2) ≡ trn1 (x), xk·2

i ≡ xk≪i, i > 0, k ∈ {0, . . . , 2n − 1}, (3)

где k ≪ i— число, двоичная запись которого является циклическим
сдвигом двоичной записи k(2) на i позиций в сторону старших разрядов.
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1.4. Класс Мэйорана — МакФарланда. Класс Мэйорана — Мак-
Фарланда M2n от 2n переменных состоит из функций вида

f(x, y) = 〈x, π(y)〉n ⊕ ϕ(y), x, y ∈ Fn
2 ,

где π— подстановка на Fn
2 и ϕ : Fn

2 → F2. Все они являются бент-функци-
ями. Здесь используем 〈·, ·〉n, поскольку рассматриваем как «обычные»
функции вида Fn

2 × Fn
2 → F2, для которых

〈x, y〉n = 〈x, y〉 = x1y1 ⊕ · · · ⊕ xnyn, x, y ∈ Fn
2 ,

так и функции над полем вида F2n × F2n → F2, для которых

〈x, y〉n = trn1 (xy), x, y ∈ F2n ,

т. е. в последнем случае рассматриваем Fn
2 как F2n . Все полученные в ра-

боте результаты справедливы, если в качестве 〈·, ·〉n взять любую сим-
метричную невырожденную билинейную форму над Fn

2 (F2n), которая
линейна по обоим аргументам, её значение не меняется при перестанов-
ке аргументов и 〈a, x〉n ≡ 0 только при a = 0 ∈ Fn

2 [33].
Ортогональное пространство к линейному подпространству L ⊆ Fn

2

определяется относительно используемой билинейной формы:

L⊥ = {y ∈ Fn
2 | 〈x, y〉n = 0 для всех x ∈ L} ⊆ Fn

2 .

Отметим, что dimL⊥ = n− dimL.

1.5. Бент-функции на расстоянии 2n и M2n. Минимальное рас-
стояние между двумя различными бент-функциями от 2n переменных
равно 2n [17]. Критерий такого расположения даёт

Утверждение 1 [17]. Пусть f ∈ F2n — бент-функция и U ⊂ F2n
2 ,

|U | = 2n. Тогда f⊕IndU является бент-функцией, если и только если U —

аффинное подпространство F2n
2 и f |U аффинная.

Для любой бент-функции f ∈ M2n существуют бент-функции на рас-
стоянии 2n от f, которые будем называть ближайшими. В настоящей
работе большое внимание уделяется известной [28] нижней оценке числа
таких бент-функций, которая уточнена в [29].

Утверждение 2 [28, 29]. Число ближайших к f ∈ M2n бент-функций

не меньше ℓ2n = 22n+1−2n, при этом в точности ℓ2n из них принадлежат

классу M2n.

Известно [30], что нижняя оценка ℓ2n достижима при простых n > 5.
Для произвольных функций π : Fn

2 → Fn
2 , подобной используемым при по-

строении класса M2n подстановкам, и F : Fn
2 → Fm

2 положим:
• Lk(π) =

{
U ∈ ASkn | π(U) ∈ ASkn

}
и L(π) = L0(π) ∪ · · · ∪ Ln(π);

• LAk(F ) =
{
U ∈ ASkn | F |U аффинна

}
.
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Например, построение всех ближайших к f ∈ M2n бент-функций с по-
мощью утверждения 1 эквивалентно нахождению множества LAn(f),
а число таких бент-функций равно |LAn(f)|. Далее также потребуется
следующее известное свойство инверсии элементов конечного поля.

Утверждение 3 [34]. Пусть π(x) = x2
n−2 для x ∈ F2n и 2 6 k 6 n.

Тогда если k ∤ n, то Lk(π) = ∅, иначе Lk(π) = {sF2k | s ∈ F2n \ {0}}, где

sF2k = {sx | x ∈ F2k}.
Заметную роль [30] в достижимости оценки ℓ2n играют APN-подста-

новки, каждую из которых эквивалентно можно определить как подста-
новку π на Fn

2 такую, что L2(π) = ∅ (см. [14]).

2. Описание ближайших к f ∈ M2n бент-функций

и подсчёт их числа

Переформулируем критерий расположения ближайших к f ∈ M2n

бент-функций, предложенный в [30], используя другое представление
элементов LAn(f) (п. 2.1), а также определив специальный линейный
оператор (п. 2.2), свойства которого позволяют найти |LAn(f)|. Для изу-
чения этих свойств можно использовать некоторые упрощения (п. 2.3).

2.1. Представление аффинных подпространств Fk
2 × Fm

2 . В ра-
боте [30] для представления подпространств использовались базисные
GJB-матрицы (приведённые ступенчатые матрицы). Однако не всегда
удобно работать с базисами, особенно если функции представлены в ал-
гебраическом виде. Рассмотрим схожее представление подпространств
Fk
2 × Fm

2 на языке множеств, задействующее меньшие подпространства
Fk
2 и Fm

2 (пересечение и проекцию), а также аффинные функции:

S(U, V,H) =
{
(x⊕H(y), y) ∈ Fk

2 × Fm
2 | x ∈ V, y ∈ U

}
, (4)

где
• U — аффинное подпространство Fm

2 ,
• V — линейное подпространство Fk

2,
• H ∈ Ak

U , т. е. функция H : U → Fk
2 аффинная.

Утверждение 4. Множество S(U, V,H) образует аффинное подпро-

странство в Fk
2 × Fm

2 размерности dimU + dimV. Более того,

1) любое аффинное подпространство S ⊆ Fk
2 × Fm

2 представимо как

S = S(U, V,H) с помощью проекции U и пересечения V :

U =
{
y ∈ Fm

2 | существует x ∈ Fk
2 такой, что (x, y) ∈ S

}
,

V × {0}m = [S] ∩
(
Fk
2 × {0}m

)
;

2) представление S = S(U, V,H) единственно при H ∈ Ak
U/AV

U .
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Доказательство. Нетрудно видеть, что S(U, V,H) ⊆ Fk
2×Fm

2 — аф-
финное подпространство и S(U, V,H) = (H(a), a) ⊕ [S(U, V,H)] для про-
извольно выбранного a ∈ U. При этом для каждого значения второй
части y ∈ U есть ровно |H(y) ⊕ V | различных значений первой части.
Итого |S(U, V,H)| = |U | · |V |, т. е. dimS(U, V,H) = dimU + dimV.

Представление. Если S = S(U, V,H) для некоторойH ∈ Ak
U , то под-

пространства U и V определяются однозначно по приведённым в условии
формулам в силу очевидных свойств конструкции. Рассмотрим произ-
вольное аффинное подпространство S ⊆ Fk

2 × Fm
2 . Множества U ⊆ Fm

2

и V ⊆ Fk
2 однозначно задаются теми же формулами по S и являются

аффинным и линейным подпространствами соответственно.
С целью подобрать подходящую аффинную функцию сначала найдём

такую функцию H : [U ] → Fk
2 , что [S] = S([U ], V,H). Пусть C(y) = [S] ∩(

Fk
2 × {y}

)
, y ∈ [U ]. Очевидно, что C(y) непусто и является смежным

классом V × {0}m = [S] ∩
(
Fk
2 × {0}m

)
. Более того, [S] =

⋃
y∈[U ]

C(y).

Пусть y1, . . . , yr ∈ Fm
2 образуют базис [U ], а s1, . . . , sr ∈ Fk

2 — любые
векторы такие, что (si, yi) ∈ C(yi) при i ∈ {1, . . . , r}. Положим H(yi) = si,
i ∈ {1, . . . , r}, а остальные значения H на [U ] определим из соотношения
линейности. После этого произвольным образом продолжим функцию H
до некоторой линейной функции [H] : Fm

2 → Fk
2 такой, что H = [H]|[U ].

Заметим, что C(y) = (H(y), y) ⊕ (V × {0}m). Действительно, если y =
yi1 ⊕ · · · ⊕ yit для 0 6 t 6 r, то

(H(y), y) = (H(yi1), yi1)⊕ · · · ⊕ (H(yit), yit) ∈ [S],

поскольку (H(yi1), yi1), . . . , (H(yit), yit) лежат в линейном [S]. Таким об-
разом, (H(y), y) ∈ C(y), т. е. C(y) = (H(y), y) ⊕ (V × {0}m). Это также
означает, что [S] = S([U ], V,H).

Далее, возьмём произвольно (b, a) ∈ S, т. е. S = (b, a)⊕ [S]. Получаем
S = S(U, V,H ′) для H ′(x) = [H](x) ⊕ [H](a) ⊕ b при x ∈ U = a⊕ [U ].

Единственность. Если S = S(U, V,H) = S(U ′, V ′,H ′), то по постро-
ению U ′ = U и V ′ = V. Далее, подпространства S(U, V,H) и S(U, V,H ′)
совпадают тогда и только тогда, когда для любого y ∈ U смежные
классы H(y) ⊕ V и H ′(y) ⊕ V совпадают. Это эквивалентно тому, что
H(y)⊕H ′(y) ∈ V, y ∈ U, т. е. H ⊕H ′ — аффинная функция вида U → V,

откуда H
V
= H ′. Утверждение 4 доказано.

Замечание 1. Функции множества AR
U являются представителями

классов эквивалентности из Ak
U/AV

U , где R ⊆ Fk
2 — произвольное линей-

ное подпространство размерности k − dimV такое, что R ∩ V = {0}.
Действительно, в этом случае Fk

2 раскладывается в прямую сумму под-
пространств V и R, а равенство R ∩ V = {0} обеспечивает попарную
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неэквивалентность представителей. Таким образом, любую аффинную
функцию H : U → Fk

2 можно представить в виде суммы функций из мно-
жеств AR

U и AV
U . Такое линейное подпространство R можно легко постро-

ить, например зная информационные координаты V [35].

Замечание 2. Линейное подпространство Fk
2×Fm

2 также может быть
представлено конструкцией S(U, V,H). Для этого достаточно применить
линейные подпространство U и функцию H.

Далее в основном будем рассматривать пространство Fn
2 × Fn

2 , т. е.
k = m = n, поскольку именно на нём задаются бент-функции из класса
Мэйорана —МакФарланда M2n.

2.2. Бент-функции, ближайшие к f ∈ M2n. Рассмотрим функ-
цию π : Fn

2 → Fn
2 и подпространство U ∈ ASkn такие, что π(U) ∈ ASkn;

положим V = [π(U)]⊥ ∈ Sn−k
n . Линейный оператор GUπ : An

U/AV
U → ‹FU

определим следующим образом:

GUπ (H) : x 7→ 〈H(x), π(x)〉n, x ∈ U. (5)

Для удобства обозначим отношение V
= на An

U/AV
U через π

= . Заметим, что
при U = Fn

2 не требуется использовать фактор-пространство входных

аргументов, в этом случае будем обозначать GF
n
2

π через Gπ : An
n → ‹Fn.

Утверждение 5. Линейный оператор GUπ определён корректно.

Доказательство. Пусть H,H ′ : U → Fn
2 аффинные и H

π
= H ′, т. е.

H ′ = H ⊕∆, где ∆: U → [π(U)]⊥ аффинная. Тогда

〈H ′(x), π(x)〉n =

= 〈H(x) ⊕∆(x), π(x)〉n = 〈H(x), π(x)〉n ⊕ 〈∆(x), π(x)〉n =

= 〈H(x), π(x)〉n ⊕ 〈∆(x), π(a)〉n ⊕ 〈∆(x), π(a) ⊕ π(x)〉n,
где a ∈ U. Тем самым π(a) ⊕ π(x) ∈ [π(U)], а в силу ∆(x) ∈ [π(U)]⊥

получаем
〈∆(x), π(a)⊕ π(x)〉n ≡ 0.

Поскольку π(a) не зависит от x, а ∆ аффинная, функция 〈∆(x), π(a)〉n
также аффинная. Следовательно, H π

= H ′ влечёт

GUπ (H) = 〈H(x), π(x)〉n ≃ 〈H ′(x), π(x)〉n = GUπ (H ′).

Линейность оператора очевидна. Утверждение 5 доказано.

Используя ядро Ker GUπ =
{
H ∈ An

U/AV
U | GUπ (H) ≃ 0

}
и образ

Im GUπ = GUπ
(
An

U/AV
U

)
оператора GUπ , переформулируем критерий из [30].

Заметим, что это можно сделать ещё одним схожим способом [35].
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Теорема 1. Пусть f(x, y) = 〈x, π(y)〉n⊕ϕ(y) ∈ M2n и L ⊆ F2n
2 . Тогда

f ⊕ IndL — ближайшая бент-функция к f, если и только если

L = S(U, [π(U)]⊥,H ⊕H0),

где U ∈ L(π), H ∈ Ker GUπ и GUπ (H0) ≃ ϕ|U . Произвольная пара U ∈ L(π)
и H ⊕H0 ∈ An

U/A
[π(U)]⊥

U однозначно определяет подходящее L.

Доказательство. Заметим, что dimL = dimU + dim[π(U)]⊥ = n,
поскольку U ⊆ Fn

2 . В силу утверждения 1 достаточно проанализировать
аффинность функции f на подпространстве L ∈ ASn2n, которое в общем
случае для подходящих подпространств V, U и функции H ′ имеет вид

L = S(U, V,H ′) = {(x⊕H ′(y), y) | x ∈ V, y ∈ U}.

Для произвольных x ∈ V, y ∈ U имеем

f |L(x, y) = 〈x⊕H ′(y), π(y)〉n ⊕ ϕ(y) =
= 〈x, π(y)〉n ⊕ 〈H ′(y), π(y)〉n ⊕ ϕ(y). (6)

С одной стороны, если подпространство U и функции H, H0 выбраны,
как указано в условии теоремы, а V = [π(U)]⊥ и H ′ = H ⊕ H0, то при
помощи (6) нетрудно проверить, что f аффинна на L.

С другой стороны, если f |L аффинна, то из (6) при a ∈ V следует,
что

D(a,0)f |L(x, y) = 〈a, π(y)〉 ≡ const,

Зафиксируем произвольный u ∈ U и рассмотрим π′(y) = π(y) ⊕ π(u).
После подстановки получаем

D(a,0)f |L(x, y) = 〈a, π′(y)〉 ⊕ 〈a, π(u)〉 ≡ const,

откуда 〈a, π′(y)〉 ≡ const. При этом π′(u) = 0 и 〈a, π′(u)〉 = 0, так что
〈a, π′(y)〉 ≡ 0. Из произвольности a ∈ V следует, что π′(U) ⊆ V ⊥. Однако
по утверждению 4 выполняется dimU = n − dimV = dimV ⊥, значит,
π′(U) = V ⊥ и π(U) = π(u) ⊕ V ⊥. Другими словами, имеем U ∈ L(π)
и V = [π(U)]⊥.

В этом случае согласно (6) аффинность f |L сводится к аффинности
функции 〈H ′(y), π(y)〉n ⊕ ϕ(y). В свою очередь, это можно записать как
GUπ (H ′) ≃ ϕ|U , где ϕ|U рассматривается уже как функция из ‹FU . Так как
оператор GUπ линейный, последнее эквивалентно тому, что H ′ = H ⊕H0,
где H ∈ Ker GUπ и GUπ (H0) ≃ ϕ|U . Осталось заметить, что согласно утвер-
ждению 4 представление L единственно при выборе H ′ ∈ An

U/AV
U . Тео-

рема 1 доказана.
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Из доказанного критерия и линейности GUπ напрямую вытекает след-
ствие о числе ближайших к f ∈ M2n бент-функций, которое согласно
утверждению 1 равно |LAn(f)|.

Следствие 1. Если f(x, y) = 〈x, π(y)〉n ⊕ ϕ(y) ∈ M2n, то

|LAn(f)| =
∑

L∈L(π)

IndIm GL
π
(ϕ|L) ·

∣∣Ker GLπ
∣∣.

Далее докажем дополнительные свойства оператора GUπ , а в разд. 4–6
продемонстрируем удобство формулы из следствия 1, которую уточним
в теореме 3. Заметим, что свойства чисел |L2(π)| и |L(π)| исследовались
в работах [36–38].

2.3. Свойства GUπ и переход к Gπ′ . Поиск ядра и образа GUπ пред-
ставляется непростой задачей из-за использования ограничений функций
на U ∈ ASkn. Например, нужно следить за однозначностью представ-
ления функций. Однако, мы покажем, что можно обойти ограничения
функций, рассматривая свойства оператора Gπ′ для некоторой подста-
новки π′ : Fk

2 → Fk
2 .

Теорема 2. Пусть функция π : Fn
2 → Fn

2 и подпространство U ∈ ASkn
таковы, что π(U) ∈ ASkn, а также

• функция π′ : Fk
2 → Fk

2 определена равенством π′ = B ◦ π ◦ A, где

A : Fk
2 → U и B : π(U)→ Fk

2 обратимы и аффинны;

• GUπ и Gπ′ определены относительно 〈·, ·〉n и 〈·, ·〉k соответственно;

• функция [B]∗ : Fk
2 → Fn

2 сопряжённая к [B], т. е.

〈[B]∗(x), y〉n = 〈x, [B](y)〉k, x ∈ Fk
2, y ∈ Fn

2 .

Тогда

Ker GUπ = [B]∗ ◦Ker Gπ′ ◦ A−1 = {[B]∗ ◦H ◦A−1 | H ∈ Ker Gπ′},
Im GUπ = Im Gπ′ ◦A−1 = {ϕ ◦ A−1 | ϕ ∈ Im Gπ′},

при этом
∣∣Ker GUπ

∣∣ =
∣∣Ker Gπ′

∣∣ и
∣∣Im GUπ

∣∣ =
∣∣Im Gπ′

∣∣.

Доказательство. Пусть V = [B]∗
(
Fk
2

)
— линейное подпространство

в Fn
2 , т. е. [B]∗ : Fk

2 → V. Докажем от противного, что V ∩ [π(U)]⊥ = {0}.
Пусть, напротив, [B]∗(a) ∈ [π(U)]⊥ для некоторого a ∈ Fk

2 \ {0}. Выберем
u ∈ π(U); для любого y ∈ [π(U)] имеем

〈a, [B](u⊕ y)〉k = 〈[B]∗(a), u⊕ y〉n =

= 〈[B]∗(a), u〉n ⊕ 〈[B]∗(a), y〉n = 〈[B]∗(a), u〉n.
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Заметим, что [B]|π(U) = B ⊕ const. В силу обратимости B получаем
[B](π(U)) = B(π(U)) ⊕ const = Fk

2 ⊕ const = Fk
2. Таким образом, для

любого x ∈ Fk
2

〈a, x〉k = 〈[B]∗(a), u〉n,
что противоречит невырожденности формы 〈·, ·〉k, поскольку a 6= 0.

Докажем, что dimV = k, т. е. обратимость [B]∗. Действительно, если
[B]∗(x1) = [B]∗(x2) при x1, x2 ∈ Fk

2 и x1 6= x2, то из равенств

〈[B]∗(x1), y〉n = 〈x1, [B](y)〉k, 〈[B]∗(x2), y〉n = 〈x2, [B](y)〉k
вытекает, что для любого y ∈ Fn

2

〈x1 ⊕ x2, [B](y)〉k = 0.

Это противоречит невырожденности формы 〈·, ·〉k, поскольку x1⊕x2 6= 0
и [B](π(U)) = Fk

2. Тем самым функция [B]∗ : Fk
2 → V обратима.

Обратимость A и [B]∗ позволяет любую функцию H ′ ∈ AV
U предста-

вить в виде H ′ = [B]∗◦H◦A−1 для некоторой H ∈ Ak
k. В силу доказанных

свойств V и замечания 1 именно такие функции можно рассматривать
в качестве попарно неэквивалентных представителей фактор-простран-

ства An
U/A

[π(U)]⊥

U .

Осталось заметить, что для функции ϕ = Gπ′(H) и любого x ∈ Fk
2

по построению справедливы равенства

ϕ(x) = 〈H(x), B(π(A(x)))〉k ≃ 〈H(x), [B](π(A(x)))〉k =

= 〈[B]∗(H(x)), π(A(x))〉n = 〈[B]∗(H(A−1(y)))), π(y)〉n = ϕ′(y),

где y = A(x) ∈ U. Поскольку A
(
Fk
2

)
= U, функция ϕ′(y) = ϕ(A−1(y))

определена на всём U и ϕ′ = GUπ (H ′). При этом ϕ′ π
= 0 тогда и только

тогда, когда ϕ ≃ 0, что означает эквивалентность условий H ∈ Ker Gπ′

и H ′ ∈ Ker GUπ . Теорема 2 доказана.

Таким образом, теорема 2 позволяет использовать естественную били-
нейную форму, не ограничивая её область определения. Например, мож-
но работать с trk1(·) над F2k вместо сужения trn1 (·) на U ∈ ASkn. Более того,
можно переходить к другой билинейной форме, не меняя начального U.
Полезными также являются следующие свойства.

Утверждение 6. Пусть функции π : Fn
2 → Fn

2 и B ∈ An
n обратимы.

Тогда Im GUπ = Im GUB◦π для любого подпространства U ∈ L(π).
Доказательство прямо следует из теоремы 2.

Утверждение 7. Пусть π : Fn
2 → Fn

2 обратима, ϕ ∈ Fn, L, U ∈ L(π)
и L ⊆ U. Тогда если ϕ|U ∈ Im GUπ , то ϕ|L ∈ Im GLπ .
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Доказательство. Условие ϕ|U ∈ Im GUπ означает, что существует
функция H ∈ An

U такая, что GUπ (H) ≃ ϕ|U , т. е. GUπ (H) = ϕ|U ⊕ h, где
h ∈ AU . Рассмотрим сужение H|L. Очевидно, что оно также будет аф-
финным, т. е. H|L ∈ An

L. Тогда для соответствующего фактор-простран-
ства GLπ (H|L) = ϕ|L ⊕ h|L, но h|L также аффинна, т. е. GLπ (H|L) ≃ ϕ|L.
Утверждение 7 доказано.

Замечание 3. Если для f(x, y) = 〈x, π(y)〉n ⊕ ϕ(y) ∈ M2n справед-
ливо ϕ ∈ Im Gπ, то ϕ|U ∈ Im GUπ для любого U ∈ L(π), что упрощает
формулу из следствия 1. Вместе с тем, это означает EA-эквивалетность
бент-функций f и f ′(x′, y′) = 〈x′, π(y′)〉n: достаточно сделать замену
x′ = x⊕H(y) и y′ = y для Gπ(H) ≃ ϕ, и получим f ′ с точностью до аф-
финной части.

3. Ядро и образ Gπ для некоторых π

Найдём ядро (или мощность ядра) и образ оператора Gπ для неко-
торых функций π. Остановимся на аффинных функциях и функциях
от малого числа переменных в представлении над Fn

2 , а также функции
инверсии элементов конечного поля, продемонстрировав алгебраический
подход.

3.1. Аффинные подстановки и подстановки от 3 переменных.

Свойства оператора Gπ несложно определить для аффинных подстано-
вок π ∈ An

n. Заметим, что при n ∈ {1, 2} все подстановки на Fn
2 аффинны.

При n = 1 это очевидно, а при n = 2 достаточно вспомнить, что deg π < n
для любой подстановки π : Fn

2 → Fn
2 (вообще говоря, при n > 2; см., на-

пример, [8]).
Рассматривая подстановки на Fn

2 , удобно пользоваться матричным
представлением для функции H ∈ An

n: H(x) = xA⊕ a, где A— невырож-
денная двоичная матрица порядка n и a ∈ Fn

2 , при этом

Gπ(H) : x 7→ 〈xA⊕ a, π(x)〉, |Ker Gπ| · |Im Gπ| = 2n
2+n. (7)

Утверждение 8. Пусть π : Fn
2 → Fn

2 — взаимно однозначная аффин-

ная функция. Тогда

Im Gπ = {ϕ ∈ ‹Fn | degϕ 6 2}, |Ker Gπ| = 2
n(n+3)

2 .

Доказательство. 1. В силу утверждения 6 можно считать без огра-
ничения общности, что π— тождественное отображение, поэтому образ
аффинной функции H ∈ An

n под действием оператора Gπ представляет
собой булеву функцию 〈xA⊕ a, x〉 ∈ ‹Fn, где A— невырожденная двоич-
ная матрица порядка n и a ∈ Fn

2 . Ясно, что так можно получить лю-
бую квадратичную функцию, при этом степень получившейся функции
не может быть больше 2.
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2. Имеем |Ker Gπ| = 2n
2+n−dim Im Gπ = 2n

2+n−n(n−1)/2 = 2
n(n+3)

2 в си-
лу (7). Утверждение 8 доказано.

Перейдём к произвольным подстановкам π : F3
2 → F3

2.

Утверждение 9. Пусть π : F3
2 → F3

2 — взаимно однозначная неаф-

финная функция. Тогда Im Gπ = ‹F3 и |Ker Gπ| = 256.

Доказательство. 1. В силу того, что π взаимно однозначна и неаф-
финна, deg π = 2. Таким образом, её полином Жегалкина можно пред-
ставить в следующем виде:

π(x1, x2, x3) =



Q1

1

Q1
2

Q1
3



⊤

x2x3 +



Q2

1

Q2
2

Q2
3



⊤

x1x3 +



Q3

1

Q3
2

Q3
3



⊤

x1x2 + xB + b,

где Qi
j ∈ F2, i, j ∈ {1, 2, 3}, B — двоичная матрица порядка 3 и b ∈ F3

2.
Поскольку degπ = 2, существует вектор коэффициентов

q = (q1, q2, q3) ∈
{(
Q1

1, Q
2
1, Q

3
1

)
,
(
Q1

2, Q
2
2, Q

3
2

)
,
(
Q1

3, Q
2
3, Q

3
3

)}
,

с весом Хэмминга wt(q) 6= 0, которому соответствует координатная функ-
ция f функции π, т. е.

f(x1, x2, x3) = q1x2x3 ⊕ q2x1x3 ⊕ q3x1x2 ⊕ 〈a, x〉 ⊕ c,
где a ∈ F3

2 и c ∈ F2. Так как π обратима, все её компонентные функции
уравновешенные, включая f [8]. Далее будем считать, что в 〈xT ⊕ s, π(x)〉
функция xT ⊕ s ∈ A3

3 имеет ненулевую координатную функцию только
в координате, соответствующей f, т. е. 〈xT ⊕ s, π(x)〉 = h(x) · f(x), где
h ∈ A3.

Случай 1: wt(q) = 1. Без ограничения общности положим q3 = 1.
Заметим, что x1x2 ⊕ a1x1 ⊕ a2x2 = (x1 ⊕ a2)(x2 ⊕ a1) ⊕ a1a2. Поскольку
свободный член в полиноме Жегалкина f влияет только на аффинную
часть h(x) · f(x), можно его не рассматривать. После замены

y1 = x1 ⊕ a2, y2 = x2 ⊕ a1, y3 = x3

функция f принимает вид

f(x1, x2, x3) = y1y2 ⊕ a3y3,
при этом f уравновешенна, так что a3 = 1. Далее,

1 · f(x) = y1y2 ⊕ y3,
y1 · f(x) = y1y2 ⊕ y1y3,
y2 · f(x) = y1y2 ⊕ y2y3,
y3 · f(x) = y1y2y3 ⊕ y3,
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т. е. {y1y2, y1y3, y2y3, y1y2y3} ⊆ Im Gπ.Отсюда получаем {x1x2, x1x3, x2x3,
x1x2x3} ⊆ Im Gπ, так как все функции из этого множества выражаются
через функции y1, y2, y3 и их суммы (с точностью до аффинной части).
Тем самым Im Gπ = ‹F3.

Случай 2: wt(q) = 2. Без ограничения общности положим q1 = 0.
Сделав линейную замену

z1 = x1, z2 = x2 ⊕ x3, z3 = x3,

получим
f(x1, x2, x3) = z1z2 ⊕ a′1z1 ⊕ a′2z2 ⊕ a′3z3 ⊕ c′,

где a′ ∈ F3
2 и c′ ∈ F2. Далее действуя аналогично случаю 1 приходим

к тому, что {z1z2, z1z3, z2z3, z1z2z3} ⊆ Im Gπ. Вместе с тем

z1z3 = x1x3, z1z2 = x1x2 ⊕ x1x3,
z2z3 = x2x3 ⊕ x3, z1z2z3 = x1x2x3 ⊕ x1x3.

Следовательно, {x1x2, x1x3, x2x3, x1x2x3} ⊆ Im Gπ.
Случай 3: wt(q) = 3, т. е. q = (1, 1, 1). Здесь квадратичная часть f

равна функции голосования g(x1, x2, x3) = x1x2 ⊕ x1x3 ⊕ x2x3, при этом
g(x1 ⊕ 1, x2, x3) = g(x1, x2, x3)⊕ x2 ⊕ x3. Тем самым, сделав замену

y1 = x1 ⊕ s1, y2 = x2 ⊕ s2, y3 = x3 ⊕ s3
для подходящего s ∈ F3

2, получим f(x) = g(y) либо f(x) = g(y) ⊕ y3
(с точностью до константы). Однако wt(g(y) ⊕ y3) = 2, а сама g уравно-
вешенная. Таким образом, f(x) = g(y). Далее,

(y1 ⊕ y2 ⊕ y3) · f(x) = y1y2y3,

(y1 ⊕ 1) · f(x) = y2y3 ⊕ y1y2y3,
(y2 ⊕ 1) · f(x) = y1y3 ⊕ y1y2y3,
(y3 ⊕ 1) · f(x) = y1y2 ⊕ y1y2y3,

откуда вытекает, что {y1y2, y1y3, y2y3, y1y2y3} ⊆ Im Gπ и, следовательно,
{x1x2, x1x3, x2x3, x1x2x3} ⊆ Im Gπ.

2. Имеем |Ker Gπ| = 23
2+3−dim Im Gπ = 212−4 = 256. Утверждение 9

доказано.

3.2. Инверсия элемента конечного поля. Применив теорему 6
из [30], можно найти образ оператора Gσ при простом n > 5, где σ—
функция обращения элементов F2n . При этом заметим, что Im Gσ будет
таким при любом n.

Утверждение 10. Пусть σ(x) = x2
n−2 для x ∈ F2n . Тогда

Ker Gσ =
{
αx+ βx2 + γx2

n−1
+ γ2 | α, β, γ ∈ F2n , tr

n
1 (α) = 0

}
,
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Im Gσ =
{
trn1 (c2x

22−1 + · · ·+ cn−1x
2n−1−1) + cnx

2n−1 |
c2, . . . , cn−1 ∈ F2n , cn ∈ F2

}
,

при этом |Ker Gσ| = 23n−1 и |Im Gσ| = 2(n−1)2 .

Доказательство. Любая аффинная функция H : F2n → F2n пред-
ставима единственным образом в виде

H(x) = α0x
20 + α1x

21 + · · ·+ αn−1x
2n−1

+ αn, α0, . . . , αn ∈ F2n .

Рассмотрим Gσ:

trn1 (x
2n−2H(x)) = trn1 (α0x

2n−1 + α1x
21−1 + · · ·+ αn−1x

2n−1−1 + αnx
2n−2).

Согласно (3) имеем

trn1 (αnx
2n−2) = trn1

((
α2n−1

n x2
n−1−1

)2)
= trn1

(
α2n−1

n x2
n−1−1

)
,

trn1 (α0x
2n−1) = α20

0 x
(2n−1)≪0 + · · ·+ α2n−1

0 x(2
n−1)≪(n−1) = trn1 (α0)x

2n−1.

Слагаемое trn1 (α1x
21−1) линейно, поэтому элементами Im Gσ являются

функции вида

trn1 (α2x
22−1) + · · ·+ trn1 (αn−2x

2n−2−1) +

+ trn1
((
αn−1 + α2n−1

n

)
x2

n−1−1
)
+ trn1 (α0)x

2n−1. (8)

Для нахождения Ker Gσ требуется определить все α0, . . . , αn, для ко-
торых функция (8) аффинна. Раскрыв все trn1 с переменной и с помо-
щью (3) записав общий полином, получим x в степенях (2j − 1) ≪ i, где
j ∈ {2, . . . , n− 1} и i ∈ {0, . . . , n − 1}, причём

((2j − 1) ≪ i)(2) = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
j

) ≪ i.

Это означает, что все эти степени попарно различны и не равны 2n − 1,
причём их вес больше 1. Тогда единственный способ получить аффин-
ную функцию в (8) — приравнять все коэффициенты нулю, т. е. поло-
жить α2 = α3 = · · · = αn−2 = 0, αn−1 = α2n−1

n (отсюда α2
n−1 = αn)

и trn1 (α0) = 0. Таким образом, коэффициенты α1 и αn−1 можно выбрать
из F2n произвольным образом, для α0 подходит ровно половина элемен-
тов F2n в силу линейности trn1 , а αn = α2

n−1. Тем самым выражения для
ядра Ker Gσ и его мощности доказаны. Мощность образа, очевидно, на-
ходится по формуле |Im Gσ| = 2n

2+n−(3n−1) = 2(n−1)2 . Утверждение 10
доказано.
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4. Достижимость нижней оценки ℓ2n
числа ближайших бент-функций

В этом разделе усилим результаты [30] о достижимости нижней оцен-
ки ℓ2n (см. табл. 1 для n 6 10), а также уточним формулу из следствия 1.
Напомним, что при |LAn(f)| = ℓ2n все ближайшие к f ∈M2n бент-функ-
ции также лежат в классе M2n.

Таблица 1

Достижимость нижней оценки ℓ2n при n 6 10

2n Достижимость ℓ2n Комментарий

2 Достижима ℓ2 = U2 = 6

4 Не достижима См. [30] или теорему 3

6 Не достижима Теорема 6

8 Не достижима См. [30]

10 Достижима См. [30]

12 Достижима Эксп. данные для APN-подстановки из [39]

14 Достижима См. [30]

16 Неизвестно The big APN problem

18 Неизвестно Выполнимо ли условие следствия 2?

20 Неизвестно The big APN problem

4.1. Необходимое условие достижимости ℓ2n. В [30] доказано,
что для достижимости ℓ2n необходимо в построении f ∈ M2n исполь-
зовать APN-подстановку, т. е. подстановку π, для которой L2(π) = ∅.
Далее усилим это условие, уточнив формулу из следствия 1.

Теорема 3. Пусть f(x, y) = 〈x, π(y)〉n ⊕ ϕ(y) ∈M2n. Тогда

|LAn(f)| =
n∑

k=0

Sk, Sk =
∑

L∈Lk(π)

IndIm GL
π
(ϕ|L) ·

∣∣Ker GLπ
∣∣, 0 6 k 6 n,

и, в частности,

S0 + S1 = ℓ2n, S2 = 25 · |L2(π)|,
S3 = 28 · |L3(π) \ LA3(π)|+ 29 · |{L ∈ LA3(π) | degϕ|L 6 2}|.

Доказательство. По теореме 2 будем рассматривать подстановку
π′ : Fk

2 → Fk
2 и функцию ϕ′ ∈ ‹Fk вместо π и ϕ|L, где Im GLπ = Im Gπ′ ◦A−1

для обратимой A ∈ AL
k .

При k ∈ {0, 1, 2} подстановка π′ аффинна на любом подпростран-
стве L ∈ Lk(π). Согласно утверждению 8 имеем равенства Im Gπ′ = ‹Fk
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и
∣∣Ker Gπ′

∣∣ = 2k(k+3)/2, т. е. Im GLπ = ‹FL. Таким образом,

S0 + S1 = 2n · 20 + 2n · 2
n − 1

2
· 22 = ℓ2n,

S2 = |L2(π)| · 25.

Если k = 3 и π′ не аффинна, то Im Gπ′ = ‹F3 и |Ker Gπ′ | = 28 в силу
утверждения 9, а следовательно, соответствующая часть суммы S3 равна
|L3(π) \ LA3(π)| · 28.

Если k = 3 и подстановка π′ аффинна, то Im Gπ′ = {g ∈ ‹F3 | deg g 6 2}
и |Ker Gπ′ | = 29 из утверждения 8. При этом Im GLπ = Im Gπ′ ◦ A−1 =

{g ∈ ‹FL | deg g 6 2}, так как степень функции инвариантна относительно
обратимого аффинного преобразования A ∈ AL

3 . Тем самым оставшаяся
часть суммы S3 равна |{L ∈ LA3(π) | degϕ|L 6 2}|·29, что в совокупности
даёт искомое число. Теорема 3 доказана.

Сформулируем в виде следствия усиление необходимого условия.

Следствие 2. Пусть f(x, y) = 〈x, π(y)〉n ⊕ ϕ(y) ∈ M2n, при этом

L2(π) ∪ L3(π) 6= ∅. Тогда |LAn(f)| > ℓ2n.

Доказательство. Воспользуемся теоремой 3. Если L2(π) 6= ∅ или
L3(π) \ LA3(π) 6= ∅, то очевидно, что |LAn(f)| > ℓ2n. Вместе с тем, если
найдётся L ∈ LA3(π), то произвольное его аффинное подпространство
U ∈ AS2n принадлежит LA2(π) = L2(π), т. е. и в этом случае оценка
не достигается. Следствие 2 доказано.

Заметим, что описание подпространств из множества LAn(f), постро-
енных при помощи L2(π), можно найти в [35]. Там же доказано, что
|LAn(f)| > ℓ2n + 25 · |L2(π)|.

4.2. Достаточное условие достижимости ℓ2n. Покажем, как мож-
но построить f ∈ M2n c |LAn(f)| = ℓ2n. Определим следующее множе-
ство функций из F2m в F2:

Rm =
{
c0 + trm1 (c1y

21−1 + · · ·+ cm−1y
2m−1−1) + cmy

2m−1 |
c1, . . . , cm−1 ∈ F2m , c0, cm ∈ F2

}
,

Нетрудно видеть, что это все функции, эквивалентные (≃) функциям
из множества Im Gσ, приведённого в утверждении 10, поскольку мы до-
бавили произвольную аффинную часть

c0 + trm1 (c1x
21−1) = c0 + trm1 (c1x).
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Для ϕ : F2n → F2, m | n и s ∈ F2n определим функцию ϕm
s : F2m → F2

по правилу
ϕm
s : y 7→ ϕ(sy), y ∈ F2m,

т. е. ϕm
s построена по ϕ|sF2m

.

Теорема 4. Пусть n = pk, где p > 5 простое и k > 1. Для функции

fϕ(x, y) = trn1 (xy
2n−2) + ϕ(y) ∈ M2n равенство |LAn(fϕ)| = ℓ2n имеет

место тогда и только тогда, когда ϕp
s /∈ Rp для всех s ∈ F2n \ {0}.

Доказательство. Пусть σ : y 7→ y2
n−2, y ∈ Fn

2 . Согласно утвержде-
нию 3

Lpi(σ) = {sF2pi
| s ∈ F2n \ {0}}, i ∈ {1, . . . , k},

и Lm(σ) = ∅ при всех m ∈ {2, . . . , pk} \ {pi}ki=1. Воспользуемся теоре-
мой 3 для вычисления LAn(fϕ). Определим функцию As : F2pi

→ sF
2pi

по правилу As(x) = sx для x ∈ F
2pi
. Тогда

ϕ|sF
2p

i
= ϕpi

s ◦A−1
s , (9)

а в силу теоремы 2 и утверждения 10 имеем
[
Im G

sF
2p

i

σ

]
≃
= Rpi ◦A−1

s , (10)

где
[
Im G

sF
2p

i

σ

]
≃

— множество функций g : sF
2pi
→ F2, эквивалентных (≃)

функциям из Im G
sF

2p
i

σ .
Пусть ϕp

s ∈ Rp для некоторого s ∈ F2n \ {0}. Тогда в силу (9) и (10)

справедливо ϕ|sF
2p

i
∈ Im G

sF
2p

i

σ . Так как 2p
i

> 1, то |LAn(fϕ)| > ℓ2n
по теореме 3.

Пусть ϕp
s /∈ Rp для всех s ∈ F2n \ {0}. По теореме 3 неравенство

|LAn(fϕ)| > ℓ2n возможно только в случае существования s ∈ F2n \ {0}
и i ∈ {1, . . . , k} таких, что ϕ|sF

2p
i
∈ Im G

sF
2p

i

σ , но тогда и ϕ|sF2p
∈ Im GsF2p

σ

в силу утверждения 7, поскольку sF2p ⊆ sF
2pi

(F2p является подпо-
лем F

2pi
, так как p | pi). Отсюда в силу (9) и (10) получаем ϕp

s ∈ Rp;
противоречие. Теорема 4 доказана.

Функции ϕ, о которых идёт речь в теореме 4, нетрудно перечислить
конструктивно.

Следствие 3. Если m | n = pk, где p > 5 простое и k > 1, то суще-

ствует ровно

2 (22
m−1 − 2m

2−m+1)
2n−1
2m−1

функций ϕ : F2n → F2, для которых ϕm
s /∈ Rm при всех s ∈ F2n \ {0}.
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Доказательство. Заметим, что

F2n = s1F2m ∪ · · · ∪ stF2m

для подходящих s1, . . . , st ∈ F2n и t = 2n−1
2m−1 , причём различные siF2m

пересекаются только по нулевому элементу. Следовательно, функцию ϕ
можно «собрать» из функций ϕm

s1 , . . . , ϕ
m
st , единственным общим значе-

нием которых является значение в нуле.
Значение ϕ(0) ∈ {0, 1} зададим произвольно — для этого имеется два

варианта. Таким образом фиксируем

ϕm
s1(0) = · · · = ϕm

st(0) = ϕ(0).

Остальные значения функции ϕm
s1 , . . . , ϕ

m
st принимают независимо. Заме-

тим также, что h ∈ Rm равносильно h + 1 ∈ Rm, или, что то же самое,
h ∈ FF2m

\ Rm равносильно h + 1 ∈ FF2m
\ Rm. Тем самым в зависи-

мости от ϕ(0) в качестве подходящей функции ϕm
si можем выбрать одну

из половины FF2m
\ Rm, т. е. имеем

22
m−1 − 2m

2−m+1

вариантов, так как |Rm| = 2(m−1)2 · 2m+1 по утверждению 10. Посколь-
ку функции из Rm имеют алгебраическое представление и ограничения
касаются только представленных степеней, сделать это нетрудно. Оста-
лось заметить, что нужно задать ровно t таких функций. Следствие 3
доказано.

Равенство |LAn(fϕ)| = ℓ2n также может выполняться для некоторых
других составных n и аналогично заданной функции fϕ ∈ M2n (см. след-
ствие 5 в п. 5.1).

5. Число ближайших бент-функций, близкое к его оценкам

Здесь продемонстрируем другое применение формулы из теоремы 3
(следствия 1). Сосредоточимся на подстановках, размерность ядра и об-
раз которых найдены в разд. 3. Условно разделим их на две части: одни,
для которых число ближайших к f ∈ M2n бент-функций |LAn(f)| близ-
ко к нижней оценке ℓ2n, и другие, для которых это число близко к точной
верхней оценке

U2n = 2n(21 + 1)(22 + 1) . . . (2n + 1). (11)

Напомним, что верхняя оценка достигается на квадратичных бент-функ-
циях (в том числе изM2n) и только на них [29]. Минимальное значение
|LAn(f)| из полученных далее равно ℓ2n + o(ℓ2n) при n → ∞, а макси-
мальное — 1

3U2n + o(U2n) при n→∞.
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5.1. Число ближайших бент-функций, близкое к ℓ2n. Бент-
функцию f ∈ M2n будем строить с помощью инверсии элементов ко-
нечного поля F2n .

Следствие 4. Пусть f(x, y) = trn1 (xy
2n−2), где x, y ∈ F2n . Тогда

|LAn(f)| = 23n−1 + 22n+1 − 2n +
∑

1<k<n :
k |n

2n − 1

2k − 1
· 23k−1.

Доказательство. По теореме 3 для k ∈ {0, 1} имеем 22n+1 − 2n

бент-функций. Для 2 6 k 6 n по утверждению 3 нужно рассмотреть
только k | n, причём Lk(π) = {sF2k | s ∈ F2n \ {0}}. Нетрудно видеть,
что |Lk(σ)| = 2n−1

2k−1
для σ : x 7→ x2

n−2, x ∈ F2n . С помощью теоремы 2
для каждого из этих подпространств перейдём к функции обращения
в подполе F2k : положим σs = A ◦ π ◦ A : F2k → F2k , где A : x 7→ sx,

т. е. σs : x 7→ x2
n−2 = x2

k−2. Поскольку ϕ ≡ 0, её ограничение всегда
принадлежит Im Gσs

. Наконец, |Ker Gσs
| = 23k−1 по утверждению 10.

Следствие 4 доказано.

Число из следствия 4 заметно больше нижней оценки. Однако для
любого n существует бент-функция f ∈ M2n, для которой |LAn(f)| имеет
ту же асимптотику, что и ℓ2n.

Теорема 5. Существует функция f(x, y) = trn1 (xy
2n−2)+ϕ(y) ∈ M2n,

для которой |LAn(f)| < 22n+1 + 81 · 2n − 82, т. е. |LAn(f)| = ℓ2n + o(ℓ2n)
при n→∞.

Доказательство. Используя теорему 3, для функции ϕ : F2n → F2

найдём число бент-функций, ближайших к f(x, y) = trn1 (xσ(y)) + ϕ(y),
σ(y) = y2

n−2, и не учтённых в оценке ℓ2n. При этом усреднив его по мно-
жеству всех таких функций ϕ, получим

Mn = 2−2n
∑

ϕ : F2n→F2

n∑

k=2

∑

L∈Lk(σ)

IndIm GL
σ
(ϕ|L) ·

∣∣Ker GLσ
∣∣ =

= 2−2n
n∑

k=2

∑

L∈Lk(σ)

∣∣Ker GLσ
∣∣ ∑

ϕ : F2n→F2

IndIm GL
σ
(ϕ|L) =

= 2−2n
n∑

k=2

∑

L∈Lk(σ)

∣∣Ker GLσ
∣∣ ·
∣∣Im GLσ

∣∣ · 2k+1 · 22n−2k =

=

n∑

k=2

∑

L∈Lk(σ)

2k
2+k · 2k+1 · 2−2k =

n∑

k=2

|Lk(σ)| · 2(k+1)2−2k .
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Здесь
∑

ϕ

IndIm GL
σ
(ϕ|L) =

∣∣Im GLσ
∣∣ · 2k+1 · 22n−2k в силу того, что в образ

Im GLσ включены функции с точностью до аффинной части, а вне под-
пространства L функцию ϕ можно задать произвольным образом.

Далее воспользуемся утверждением 3:

Mn =
∑

k>2: k |n

2n − 1

2k − 1
2(k+1)2−2k = (2n − 1)

∑

k>2: k |n

2(k+1)2−2k

2k − 1
. (12)

Приведём значения Nk = 2(k+1)2−2k

2k−1
для малых k:

N2 =
32

3
, N3 =

256

7
, N4 =

512

15
,

N5 =
16

31
, N6 =

1

63 · 215 , N7 =
1

127 · 264 .

Оценим Mn сверху:

Mn < (2n − 1)

(
5∑

k=2

Nk +
∞∑

k=6

2(k+1)2−2k−k+1

)
< 82 (2n − 1). (13)

Действительно, вторая часть суммы не превосходит 2N6, так как оче-
видно, что Nk+1 < 1

2Nk при k > 6, при этом N2 + N3 + N4 + N5 =

10 + 2
3 + 36 + 4

7 + 34 + 2
15 + 16

31 < 82− 2N6.
Поскольку Mn — среднее значение по всем функциям ϕ, хотя бы для

одной из них усредняемое число не превосходит Mn, в противном случае
среднее значение было бы больше. Теорема 5 доказана.

Таким образом, при любом n можно найти бент-функцию f ∈ M2n,
для которой среди её ближайших бент-функций не более 82 (2n−1) лежат
вне M2n (см. утверждение 2). В некоторых случаях теорема 5 влечёт
достижимость ℓ2n.

Следствие 5. Пусть m— минимальный нетривиальный делитель n,
m > 6 и n 6 2m −m2 − m − 3. Тогда найдётся бент-функция f(x, y) =
trn1 (xy

2n−2) + ϕ(y) ∈M2n, для которой справедливо |LAn(f)| = ℓ2n.

Доказательство. Поскольку m > 6, в силу (12) и (13) справедливо

Mn < (2n − 1)
∞∑

k=m

2(k+1)2−2k−k+1 < 2n · 2 · 2(m+1)2−2m−m+1.

Тем самым при n 6 2m +m − (m + 1)2 − 2 = 2m −m2 −m − 3 получа-
ем Mn < 1. Однако Mn — среднее значение, поэтому усредняемое число
хотя бы для одной из функции ϕ не превосходит Mn и, следовательно,
равно 0. Следствие 5 доказано.
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Условию на n из следствия 5 удовлетворяют числа 11 · 13, 11 · 11 · 13,
11 · 17 и т. п., что дополняет результаты п. 4.2.

5.2. Число ближайших бент-функций, близкое к U2n. Для удоб-
ства в качестве подстановки π будем рассматривать тождественное отоб-
ражение, т. е. речь пойдёт о функциях вида f(x, y) = 〈x, y〉⊕ϕ(y) ∈ M2n.
Можно легко расширить этот подкласс без изменения |LAn(f)|.

Утверждение 11. Пусть бент-функции f, g ∈ M2n имеют вид

f(x, y) = 〈x, y〉 ⊕ ϕ(y), g(x, y) = 〈x, π(y)〉 ⊕ ψ(y),
подстановка π аффинна и deg(ϕ⊕ψ) 6 2. Тогда f и g имеют одинаковое

число ближайших к ним бент-функций.

Доказательство. По утверждению 8 в Im GLπ лежат все функции
h : L→ F2 степени не выше 2,

∣∣Ker GLπ
∣∣ зависит только от размерности L,

а любое L ∈ Skn принадлежит Lk(π), поэтому по формуле из теоремы 3
получаем равенство |LAn(f)| = |LAn(g)|. Утверждение 11 доказано.

Мощность LAn(f) можно вычислить через ограничения функции ϕ
на подпространства L ∈ ASkn, которые имеют степень не выше 2.

Следствие 6. Пусть f(x, y) = 〈x, y〉 ⊕ ϕ(y) ∈ M2n. Тогда

|LAn(f)| =
n∑

k=0

∣∣{L ∈ ASkn | degϕ|L 6 2
}∣∣ · 2

k(k+3)
2 .

Доказательство. По условию π : Fn
2 → Fn

2 — тождественное отоб-
ражение. Воспользуемся теоремой 2. Для этого рассмотрим обратимую
аффинную функцию A : Fk

2 → L и положим B = A−1, так что полу-
чим ϕ′ = ϕ|L ◦ A, а π′ = A−1 ◦ π|L ◦ A : Fk

2 → Fk
2 — также тождественное

отображение. По утверждению 8 имеем Im Gπ′ = {ϕ′ ∈ ‹Fk | degϕ′ 6 2}
и |Ker Gπ′ | = 2

k(k+3)
2 , но степени ϕ′ = ϕ|L◦A и ϕ|L совпадают, так как A—

невырожденное аффинное преобразование. Финальная формула получа-
ется из теоремы 3. Следствие 6 доказано.

Напрямую воспользоваться формулой из следствия 6 трудно, однако
это можно сделать для следующего узкого класса бент-функций.

Следствие 7. Пусть f(x, y) = 〈x, y〉 ⊕ y1y2 . . . ym ∈ M2n, 3 6 m 6 n.
Тогда

|LAn(f)| =

=

n∑

k=0

(
2n−k ·

∣∣Skn
∣∣−

t∗(k)∑

t=t∗(k)

∣∣Stn−m

∣∣ ·
∣∣Sk−t

m

∣∣ · 2(k−t+1)(n−m−t)

)
· 2

k(k+3)
2 =
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= U2n −
n∑

k=0

t∗(k)∑

t=t∗(k)

∣∣Stn−m

∣∣ ·
∣∣Sk−t

m

∣∣ · 2(k−t+1)(n−m−t) · 2
k(k+3)

2 ,

где t∗(k) = max{0, k −m}, t∗(k) = min{n−m, k − 3} для k ∈ {0, . . . , n}.
Доказательство. Чтобы применить формулу из следствия 6, для

каждого k ∈ {0, . . . , n} найдём число подпространств L ∈ ASkn, для кото-
рых degϕ|L 6 2 при ϕ(y) = y1 . . . ym. Подсчитаем число L, для которых
degϕ|L > 3, а затем вычтем его из 2n−k

∣∣Skn
∣∣— числа всех подпространств

размерности k.
Без ограничения общности конъюнкцию y1 . . . ym заменим конъюнк-

цией yn−m+1 . . . yn, являющейся характеристической функцией подпро-
странства Z = Fn−m

2 × {1}m ∈ ASn−m
n . Заметим, что ϕ|L(y) = 1, если

и только если y ∈ L ∩ Z = T, причём это пересечение либо пусто, ли-
бо принадлежит AStn для некоторого t ∈ {0, . . . , n − m}. Таким обра-
зом, функция ϕ|L характеристическая для T, а её степень равна k − t.
Значит, нам нужны подпространства T размерности t 6 k − 3, точнее
t 6 min{k − 3, n−m}.

Подсчитаем число L ∈ ASkn таких, что dimL ∩Z = t 6 k− 3. Нетруд-
но видеть, что оно равно числу подпространств [L] ∈ Skn, пересекающих-
ся с [Z] по подпространству размерности t, умноженному на 2n−m−t —
именно столькими способами можно выбрать аффинное подпростран-
ство пространства L с фиксированной линейной частью.

Воспользуемся представлением линейных подпространств из п. 2.1:
L = S(U, V,H) ⊆ Fn−m

2 × Fm
2 , где U ∈ Sk−r

m , V ∈ Srn−m и H ∈ An−m
U /AV

U
линейная (см. замечание 2). Согласно утверждению 4 имеем равенство
V ×{0}m = [L]∩ [Z], т. е. r = t. Таких V ровно

∣∣Stn−m

∣∣. Далее,
∣∣Sk−t

m

∣∣ спо-
собами можем выбрать подпространство U и 2(k−t)(n−m−t) способами —
одну из попарно неэквивалентных функций H (см. замечание 1), так что
в итоге получаем ∣∣Stn−m

∣∣ ·
∣∣Sk−t

m

∣∣ · 2(k−t)(n−m−t)

вариантов выбора [L]. Отсюда находим число способов выбрать L:

2n−m−t ·
∣∣Stn−m

∣∣ ·
∣∣Sk−t

m

∣∣ · 2(k−t)(n−m−t) =
∣∣Stn−m

∣∣ ·
∣∣Sk−t

m

∣∣ · 2(k−t+1)(n−m−t),

при этом t > k −m, поскольку dimU = dimL− dimV = k − t 6 m (см.
утверждение 4). Полученное выражение суммируем по t от max{0, k−m}
до min{k−3, n−m} и вычтем из |ASkn| = 2n−k

∣∣Skn
∣∣. В результате приходим

к первому равенству для |LAn(f)| из условия теоремы.
Осталось заметить, что

n∑

k=0

2n−k ·
∣∣Skn
∣∣ · 2

k(k+3)
2 = U2n. (14)
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Действительно, с одной стороны, по теореме 3 левая часть (14) равна
|LAn(g)| для квадратичной функции g(x, y) = 〈x, y〉 от 2n переменных.
С другой стороны, |LAn(g)| = U2n согласно [28]. Следствие 7 доказано.

Замечание 4. В условии следствия 7
1) вместо y1 . . . ym можно взять IndS для любого S ∈ ASn−m

n ;
2) при m = n и m = n − 1 формулы справедливы для бент-функ-

ций f(x, y) = 〈x, y〉 ⊕ ϕ(y) ∈ M2n таких, что wt(ϕ) = 1 и wt(ϕ) = 2
соответственно.

Формулы из следствия 7 весьма полезны, поскольку дают представ-
ление |LAn(f)| через гауссовы коэффициенты

∣∣Skn
∣∣ =

k−1∏

i=0

2n − 2i

2k − 2i
, 0 6 k 6 n.

Для m ∈ {3, n} можно получить ещё более простые выражения.

Следствие 8. Пусть бент-функции f3, fn ∈ M2n, n > 3, имеют вид

f3(x, y) = 〈x, y〉 ⊕ y1y2y3, fn(x, y) = 〈x, y〉 ⊕ y1y2 . . . yn.
Тогда

|LAn(f3)| = U2n − 24n−3(21 + 1)(22 + 1) . . . (2n−3 + 1),

|LAn(fn)| = (2n − 1)

n∏

k=2

(2k + 1) +
32

3
(22n−1 + 1)− 3 · 2n+2 − 3,

при этом |LAn(f3)| = o(U2n), |LAn(fn)| = 1
3U2n + o(U2n) при n→∞.

Доказательство. Легко видеть, что при 3 6 k 6 n

t∗(k)∑

t=t∗(k)

∣∣Stn−m

∣∣ ·
∣∣Sk−t

m

∣∣ · 2(k−t+1)(n−m−t) =

®∣∣Sk−3
n−3

∣∣ · 24(n−k) для m = 3,∣∣Skn
∣∣ для m = n,

а при 0 6 k 6 2 эта сумма равна нулю.

Случай 1: m = 3. В силу следствия 7

|LAn(f3)| = U2n −
n∑

k=3

∣∣Sk−3
n−3

∣∣ · 24(n−k) · 2
k(k+3)

2 .

Заменой индекса k → k + 3 сумма в правой части приводится к виду

n∑

k=3

∣∣Sk−3
n−3

∣∣ · 24(n−k) · 2
k(k+3)

2 =

n−3∑

k=0

∣∣Skn−3

∣∣24(n−k−3) · 2
(k+3)(k+6)

2 =
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=

n−3∑

k=0

∣∣Skn−3

∣∣ · 24(n−3)−4k+3(k+3) · 2
k(k+3)

2 = 23n
n−3∑

k=0

∣∣Skn
∣∣ · 2n−3−k · 2

k(k+3)
2

(14)
=

(14)
= 23n U2(n−3) = 23n · 2n−3(21 + 1)(22 + 1) . . . (2n−3 + 1),

откуда |LAn(f3)| = U2n − 23n U2(n−3) = o(U2n) при n→∞.
Случай 2: m = n. В силу следствия 7 имеем

|LAn(fn)| = 2n(21 + 1) . . . (2n + 1)−
n∑

k=0

∣∣Skn
∣∣ · 2

k(k+3)
2 +

2∑

k=0

∣∣Skn
∣∣ · 2

k(k+3)
2 ,

где последнее слагаемое равно

1 + (2n − 1) · 22 + (2n − 1)(2n − 2)

(22 − 1)(22 − 2)
· 25 =

32

3
(22n−1 + 1)− 3 · 2n+2 − 3.

Упростим второе слагаемое

P (n) =

n∑

k=0

∣∣Skn
∣∣ · 2

k(k+3)
2 .

Аналогично выводу равенства (14) в [28], применим очевидное свойство
∣∣Skn
∣∣ =

∣∣Skn−1

∣∣+ 2n−k
∣∣Sk−1

n−1

∣∣, 1 6 k 6 n,

где по определению
∣∣Snn−1

∣∣ = 0. Поскольку
∣∣S0n
∣∣ =

∣∣S0n−1

∣∣ = 1, получаем

P (n) =

n∑

k=0

∣∣Skn
∣∣ · 2

k(k+3)
2 =

=

n−1∑

k=0

∣∣Skn−1

∣∣ · 2
k(k+3)

2 +

n∑

k=1

2n−k ·
∣∣Sk−1

n−1

∣∣ · 2
k(k+3)

2 =

= {k → k + 1} = P (n− 1) +

n−1∑

k=0

2n−1−k ·
∣∣Skn−1

∣∣ · 2
(k+1)(k+4)

2 =

= P (n− 1) + 2n+1
n−1∑

k=0

∣∣Skn−1

∣∣ · 2k2+5k+4−2k−4
2 =

= P (n− 1) + 2n+1
n−1∑

k=0

∣∣Skn−1

∣∣ · 2
k(k+3)

2 = (1 + 2n+1)P (n− 1).

Таким образом, P (n) = (2n+1 + 1)P (n − 1) и P (0) = 1, откуда

P (n) = (22 + 1)(23 + 1) . . . (2n+1 + 1),

2n(21 + 1) . . . (2n + 1)− P (n) = (22 + 1) . . . (2n + 1)(3 · 2n − 2n+1 − 1).
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Суммируя найденные слагаемые, приходим к требуемой формуле для
|LAn(fn)|, из которой нетрудно видеть, что |LAn(fn)| = 1

3U2n + o(U2n)
при n→∞. Следствие 8 доказано.

Заметим, что |LAn(fn)| > |LAn(f3)| при n > 4, хотя в этом случае
deg f3 = 3 < deg fn = n, и вообще |LAn(f3)| = o(|LAn(fn)|) при n→∞.

Интересно, что имеется ещё одна неквадратичная бент-функция, для
которой ожидаемое число ближайших бент-функций велико, имеет их
столько же, сколько и fn.

Утверждение 12. Пусть fτ (x, y) = 〈x, τ(y)〉 ∈ M2n, где τ — транс-

позиция на Fn
2 , переставляющая векторы (1, . . . , 1, 0) и (1, . . . , 1, 1) друг

с другом. Тогда |LAn(fτ )| = |LAn(fn)|.
Доказательство. Нетрудно видеть, что

τ(y) = y ⊕ (0, . . . , 0, y1 . . . yn−1).

Действительно, если (y1, . . . , yn−1) 6= (1, . . . , 1), то τ(y) = y. Иначе полу-
чаем τ(1, . . . , 1, 0) = (1, . . . , 1, 0 ⊕ 1) и τ(1, . . . , 1, 1) = (1, . . . , 1, 1 ⊕ 1), что
соответствует определению τ. Следовательно,

fτ (x, y) = 〈x, y〉 ⊕ xn(y1 . . . yn−1) = x1y1 ⊕ · · · ⊕ xnyn ⊕ y1 . . . yn−1xn.

Таким образом, переставив переменные xn и yn, получим в точности fn
и |LAn(fτ )| = |LAn(fn)|. Утверждение 12 доказано.

Замечание 5. В условии утверждения 12 можно считать, что τ —
произвольная транспозиция на Fn

2 , поскольку все fτ EA-эквивалентны
друг другу и, следовательно, имеют одинаковые |LAn(fτ )|. Для доказа-
тельства достаточно привести транспозицию τ к указанной в утвержде-
нии при помощи композиции A ◦ τ ◦ B, где A,B : Fn

2 → Fn
2 — некоторые

обратимые аффинные преобразования. Также в условии утверждения 12
вместо транспозиции можно рассматривать саму приведённую компози-
цию для произвольных транспозиции τ и обратимых аффинных A,B.

Согласно следствиям 1, 8 и утверждению 12 функции fn и fτ дают
наиболее интуитивно очевидные способы построить бент-функции с мак-
симально возможной |LAn(f)| среди неквадратичных функций f(x, y) =
〈x, π(y)〉⊕ϕ(y) ∈M2n: либо выбираем тождественную (аффинную) под-
становку π и минимально отличающуюся от тождественно нулевой функ-
цию ϕ, либо, наоборот, выбираем тождественно нулевую ϕ и минималь-
но отличающуюся от тождественной (аффинной) π. Эти рассуждения,
а также принцип построения M2n, позволяют сделать предположение.

Гипотеза 1. Пусть f — бент-функция от 2n переменных и deg f > 3.
Тогда |LAn(f)| 6 |LAn(fn)|.
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6. Классификация бент-функций из M6

Теорема 3 (следствие 1) позволяет классифицировать f ∈ M6 на осно-
ве |LA3(f)|. Начнём с мощности L2(π) для подстановок π на F3

2. Обратим
также внимание, что возможные значения |Ln−1(π)| для подстановок π
на Fn

2 (без классификации π) были получены в работе [36].

Утверждение 13. Пусть π : F3
2 → F3

2 взаимно однозначна. Тогда

|L2(π)| =





0, если δ(π) = 2,

2, если δ(π) = 4,

6, если δ(π) = 8 и π 6∈ A3
3,

14, если π ∈ A3
3.

Других взаимно однозначных функций π нет.

Доказательство. 1. По одному из определений APN-подстановки π
выполнено L2(π) = ∅.

2. Пусть δ(π) = 4. Все L ∈ L2(π) являются гиперплоскостями в F3
2,

т. е. L ∈ L2(π) тогда и только тогда, когда его сдвиг F3
2 \ L ∈ L2(π).

Далее от противного: пусть есть различные L,U ∈ L2(π), не являю-
щиеся сдвигами друг друга. В этом случае |V = L ∩ U | = 2. Обозначим
V = {a, a ⊕ v}, a, v ∈ F3

2 и π(V ) = {π(a), π(a) ⊕ v′)}, v′ ∈ F3
2. Тогда

L \ V = {b, b ⊕ v} и U \ V = {c, c ⊕ v} для некоторых b, c ∈ F3
2, так

как L и U — аффинные подпространства F3
2 и сумма всех их элементов

должна быть равна 0. То же самое верно и для образов: π(L) \ π(V ) =
{b′, b′⊕ v′} и π(U) \π(V ) = {c′, c′⊕ v′}, b′, c′ ∈ F3

2. В результате уравнение
π(x)⊕π(x⊕v) = v′ имеет как минимум шесть решений a, a⊕v, b, b⊕v, c,
c⊕ v, а это противоречит тому, что δ(π) = 4. При этом δ(π) 6= 2, откуда
|L2(π)| > 0. Следовательно, L2(π) = {L, F3

2 \ L} для некоторого L.
3. Пусть δ(π) = 8 и π не аффинна, т. е. производная π по некоторому

ненулевому направлению является константой, или, другими словами,
подстановка π имеет непустую линейную структуру. Все такие функции
можно аффинными преобразованиями привести к следующей (см., на-
пример, [8]):

π′(x) = qx1x2 + sx3 + t = π(xB ⊕ b), x ∈ F3
2,

где q, s, t ∈ F3
2, q 6= 0, двоичная матрица B невырожденная и имеет поря-

док 3, b ∈ F3
2. Ясно, что |L2(π)| = |L2(π′)|, поэтому далее вместо π будем

рассматривать π′.
Очевидно, что L ∈ L2(π) тогда и только тогда, когда π|L аффинна.

Значит, в полиноме Жегалкина π|L нет квадратичного слагаемого x1x2.
Тем самым L2(π) состоит из всех таких L ∈ AS23, на которых функция
g(x) = x1x2 аффинна.
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Производное подпространство L ∈ AS23 можно задать уравнением
a1x1 ⊕ a2x2 ⊕ a3x3 = c, причём различным парам a ∈ F3

2, c ∈ F2 соот-
ветствуют различные подпространства. Нам подходят L, заданные урав-
нениями x1 = c, x2 = c и x1 ⊕ x2 = c. Действительно, если a3 = 1,
то L = {(x1, x2, a1x1 ⊕ a2x2 ⊕ c) ∈ F3

2 | x1, x2 ∈ F2} и g|L не аффинна.
Таким образом, L2(π) состоит из 3 · 2 = 6 элементов.

4. Очевидно, так как подстановка π аффинна на всех аффинных под-
пространствах размерности 2, которых в F3

2 имеется 7 · 2 = 14.

5. В силу взаимной однозначности функции π получаем deg π 6 2,
поэтому её производные π(x) ⊕ π(x ⊕ a) по всем направлениям a ∈ F3

2
аффинны. Тем самым число решений уравнений π(x) ⊕ π(x ⊕ a) = b
принадлежит множеству {0, 2, 4, 8}. Поскольку δ(π) > 2, рассмотрены
все возможные случаи. Утверждение 13 доказано.

Приведём классификацию функций f ∈ M6 относительно |LA3(f)|.

Теорема 6. Пусть f(x, y) = 〈x, π(y)〉 ⊕ ϕ(y) ∈M6. Тогда

|LA3(f)| =





376, если δ(π) = 2,

440, если δ(π) = 4,

568, если δ(π) = 8 и π 6∈ A3
3,

568, если π ∈ A3
3 и degϕ = 3,

1080 = U6, если π ∈ A3
3 и degϕ 6 2.

Доказательство. По теореме 3

|LA3(f)| = ℓ6 + 25 · |L2(π)| + 28 · |L3(π) \ LA3(π)|+
+ 29 · |{L ∈ LA3(π) | degϕ|L 6 2}|. (15)

Здесь ℓ6 = 120, а |L2(π)| найдена в утверждении 13. Далее, L3(π) =
{
F3
2

}
,

так как n = 3. Наконец, очевидно, что LA3(π) = L3(π), если π аффинна,
и LA3(π) = ∅ иначе. Подстановкой найденных чисел в формулу (15)
получаем требуемое равенство. Теорема 6 доказана.

Теорема 6 даёт также классификацию функций из M6 относительно
EA-эквивалентности (см., например, работу [40] о методах классифика-
ции булевых функций в общем случае). Действительно, число |LAn(f)|
бент-функций на расстоянии 2n от f является инвариантом функции
f ∈ M2n относительно EA-эквивалентности. При этом в [1] доказано,
что множество бент-функций от 6 переменных разбивается на 4 класса
EA-эквивалентности. Таким образом, эти 4 класса представлены в тео-
реме 6, и каждому из них соответствует своё значение |LA3(f)|.
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Заключение

Предложенный в работе подход к перечислению бент-функций, бли-
жайших к заданной функции из класса Мэйорана — МакФарландаM2n,
обладает следующими достоинствами.
• Обеспечивает возможность подсчёта их точного числа для ряда

функций с определёнными симметриями.
• Позволяет расширить известные необходимое и достаточное усло-

вия достижимости нижней оценки ℓ2n для их числа.
• На основе свойств класса M2n для функции степени 3 и выше вы-

двинута гипотеза, ограничивающая число ближайших к ней бент-функ-
ций величиной 1

3U2n + o(U2n).
Остаётся простор для дальнейших исследований, в ходе которых воз-

можно установить другие примечательные свойства этого класса бент-
функций (см., например, [35]).

Финансирование работы

Исследование выполнено при поддержке Математического центра в Ака-
демгородке (соглашение № 075–15–2025–349 с Министерством науки и высшего
образования Российской Федерации). Дополнительных грантов на проведение
или руководство этим исследованием получено не было.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Литература

1. Rothaus O. On “bent” functions // J. Comb. Theory. Ser. A. 1976. V. 20,
No. 3. P. 300–305. DOI: 10.1016/0097-3165(76)90024-8.

2. Tokareva N. N. Bent functions: Results and applications to cryptography.
Amsterdam: Acad. Press, 2015. 220 p. DOI: 10.1016/c2014-0-02922-x.

3. Токарева Н. Н. Бент-функции: результаты и приложения. Обзор работ //
Прикл. дискрет. математика. 2009. № 1. С. 15–37. DOI: 10.17223/20710410/
3/2.

4. Токарева Н. Н. Обобщения бент-функций. Обзор работ // Дискрет. ана-
лиз и исслед. операций. 2010. T. 17, № 1. С. 34–64.

5. Helleseth T., Kholosha A. Bent functions and their connections to com-
binatorics // Surveys in combinatorics 2013. Cambridge: Camb. Univ. Press,
2013. P. 91–126. (Lond. Math. Soc. Lect. Notes Ser.; V. 409). DOI: 10.1017/
CBO9781139506748.004.

6. Dobbertin H., Leander G. A survey of some recent results on bent func-
tions // Sequences and their applications — SETA 2004. Proc. Int. Conf. (Seoul,
Korea, Oct. 24–28, 2005). Heidelberg: Springer, 2005. P. 1–29. (Lect. Notes
Comput. Sci.; V. 3486). DOI: 10.1007/11423461_1.



36 Д. А. Быков, Н. А. Коломеец

7. Mesnager S. Bent functions: Fundamentals and results. Cham: Springer, 2018.
570 p. DOI: 10.1007/978-3-319-32595-8.

8. Логачёв О. А., Сальников А. А., Смышляев С. В., Ященко В. В.

Булевы функции в теории кодирования и криптологии. М.: МЦНМО, 2012.
584 с.

9. Logachev O. A., Salnikov A. A., Yashchenko V. V. Boolean functions
in coding theory and cryptography. Providence, RI: AMS, 2012. 334 p.

10. Агибалов Г. П. Избранные теоремы начального курса криптографии.
Томск: Изд. дом ТГУ, 2005. 112 с.

11. Панкратова И. А. Булевы функции в криптографии. Томск: Изд. дом
ТГУ, 2014. 88 с.

12. Токарева Н. Н. Симметричная криптография: Краткий курс. Новоси-
бирск: НГУ, 2012. 234 с.

13. Cusick T. W., Stanica P. Cryptographic Boolean functions and applications.
Amsterdam: Acad. Press, 2017. 275 p. DOI: 10.1016/c2016-0-00852-5.

14. Carlet C. Boolean functions for cryptography and coding theory. Cambridge:
Camb. Univ. Press, 2020. 562 p. DOI: 10.1017/9781108606806.

15. McFarland R. L. A family of difference sets in non-cyclic groups // J. Comb.
Theory. Ser. A. 1973. V. 15, No. 1. P. 1–10. DOI: 10.1016/0097-3165(73)
90031-9.

16. Dillon J. F. Elementary Hadamard difference sets: PhD thesis. College Park,
1974.

17. Коломеец Н. А., Павлов А. В. Свойства бент-функций, находящихся
на минимальном расстоянии друг от друга // Прикл. дискрет. математика.
2009. № 4. С. 5–20.

18. Carlet C. Two new classes of bent functions // Advances in cryptol-
ogy — EUROCRYPT’93. Proc. Workshop on the Theory and Application
of Cryptographic Techniques (Lofthus, Norway, May 23–27, 1993). Heidel-
berg: Springer, 1994. P. 77–101. (Lect. Notes Comput. Sci.; V. 765). DOI:
10.1007/3-540-48285-7_8.

19. Zhang F., Pasalic E., Cepak N., Wei Y. Bent functions in C and D out-
side the completed Maiorana–McFarland class // Codes, cryptology and in-
formation security. Proc. 2nd Int. Conf. (Rabat, Morocco, Apr. 10–12, 2017).
Cham: Springer, 2017. P. 298–313. (Lect. Notes Comput. Sci.; V. 10194). DOI:
10.1007/978-3-319-55589-8_20.

20. Zhang F., Cepak N., Pasalic E., Wei Y. Further analysis of bent functions
from C and D which are provably outside or insideM# // Discrete Appl. Math.
2020. V. 285. P. 458–472. DOI: 10.1016/j.dam.2020.06.012.

21. Kudin S., Pasalic E. A complete characterization of D0 ∩M# and a general
framework for specifying bent functions in C outsideM# // Des. Codes Cryp-
togr. 2022. V. 90, No. 8. P. 1783–1796. DOI: 10.1007/s10623-022-01079-3.

22. Kudin S., Pasalic E., Cepak N., Zhang F. Permutations without linear
structures inducing bent functions outside the completed Maiorana–McFarland
class // Cryptogr. Commun. 2022. V. 14, No. 1. P. 101–116. DOI: 10.1007/
s12095-021-00523-w.



О ближайших бент-функциях к заданной 37

23. Bapić A, Pasalic E., Zhang F., Hodžić S. Constructing new superclasses
of bent functions from known ones // Cryptogr. Commun. 2022. V. 14, No. 6.
P. 1229–1256. DOI: 10.1007/s12095-022-00566-7.

24. Pasalic E., Bapić A., Zhang F., Wei Y. Explicit infinite families of
bent functions outside the completed Maiorana–McFarland class // Des.
Codes Cryptogr. 2023. V. 91, No. 7. P. 2365–2393. DOI: 10.1007/

s10623-023-01204-w.
25. Pasalic E., Polujan A., Kudin S., Zhang F. Design and analysis of bent

functions using M-subspaces // IEEE Trans. Inf. Theory. 2024. V. 70, No. 6.
P. 4464–4477. DOI: 10.1109/TIT.2024.3352824.

26. Kudin S., Pasalic E., Polujan A., Zhang F. The algebraic characterization
ofM-subspaces of bent concatenations and its application // IEEE Trans. Inf.
Theory. 2025. V. 71, No. 5. P. 3999–4011. DOI: 10.1109/TIT.2025.3547533.

27. Polujan A. A., Pott A. Cubic bent functions outside the completed Maiora-
na–McFarland class // Des. Codes Cryptogr. 2020. V. 88, No. 9. P. 1701–1722.
DOI: 10.1007/s10623-019-00712-y.

28. Коломеец Н. А. Перечисление бент-функций на минимальном расстоя-
нии от квадратичной бент-функции // Дискрет. анализ и исслед. операций.
2012. T. 19, № 1. С. 41–58.

29. Kolomeec N. The graph of minimal distances of bent functions and its
properties // Des. Codes Cryptogr. 2017. V. 85, No. 3. P. 395–410. DOI:
10.1007/s10623-016-0306-4.

30. Быков Д. А., Коломеец Н. А. О нижней оценке числа бент-функций
на минимальном расстоянии от бент-функции из класса Мэйорана — Мак-
Фарланда // Дискрет. анализ и исслед. операций. 2023. Т. 30, № 3. C. 57–80.

31. Nyberg K. Differentily uniform mappings for cryptography // Advances in
cryptology — EUROCRYPT’93. Proc. Workshop Theory and Application of
Cryptographic Techniques (Lofthus, Norway, May 23–27, 1993). Heidelberg:
Springer, 1994. P. 55–64. (Lect. Notes Comput. Sci.; V. 765). DOI: 10.1007/
3-540-48285-7_6.

32. Carlet C. Open questions on nonlinearity and on APN functions // Arithmetic
of finite fields. Rev. Sel. Pap. 5th Int. Workshop (Gebze, Turkey, Sept. 27–28,
2014). Cham: Springer, 2015. P. 83–107. (Lect. Notes Comput. Sci.; V. 9061).
DOI: 10.1007/978-3-319-16277-5_5.

33. Jacobson N. Basic algebra. V. I. Mineola, NY: Dover Publ., 2009. 528 p.
34. Kolomeec N. A., Bykov D. A. On the image of an affine subspace under

the inverse function within a finite field // Des. Codes Cryptogr. 2024. V. 92,
No. 2. P. 467–476. DOI: 10.1007/s10623-023-01316-3.

35. Kolomeec N. A., Bykov D. A. On the Maiorana–McFarland class ex-
tensions. Ithaca, NY, 2025. 29 p. (e-Print Archive / Cornell Univ.;
arXiv:2503.21440). DOI: 10.48550/arXiv.2503.21440.

36. Clark W. E., Hou X., Mihailovs A. The affinity of a permutation of a finite
vector space // Finite Fields Appl. 2007. V. 13. P. 80–112. DOI: 10.1016/j.
ffa.2005.07.004.



38 Д. А. Быков, Н. А. Коломеец

37. Li S., Meidl W., Polujan A., Pott A., Riera C., Stănică P. Vanishing
flats: A combinatorial viewpoint on the planarity of functions and their appli-
cation // IEEE Trans. Inf. Theory. 2020. V. 66, No. 11. P. 7101–7112. DOI:
10.1109/TIT.2020.3002993.

38. Коломеец Н. А. О подстановках, разрушающих структуру подпро-
странств определённых размерностей // Прикл. дискрет. математика. 2024.
№ 65. C. 5–20. DOI: 10.17223/20710410/65/1.

39. Browning K. A., Dillon J. F., McQuistan M. T., Wolfe A. J. An APN
permutation in dimension six // Finite fields: Theory and applications. Proc.
9th Int. Conf. (Dublin, Ireland, July 13–17, 2009). Providence, RI: AMS, 2010.
P. 33–42. (Contemp. Math.; V. 518). DOI: 10.1090/conm/518/10194.

40. Черёмушкин А. В. Методы аффинной и линейной классификации дво-
ичных функций // Труды по дискретной математике. Т. 4. М.: Физматлит,
2001. C. 273–314.

Быков Денис Александрович

Коломеец Николай Александрович

Статья поступила
27 августа 2024 г.

После доработки —
26 марта 2025 г.

Принята к публикации
22 июня 2025 г.



On the bent functions closest to a given one 39

DISKRETNYI ANALIZ I ISSLEDOVANIE OPERATSII
/DISCRETE ANALYSIS AND OPERATIONS RESEARCH/

July–September 2025. Vol. 32, No. 3. P. 5–42

UDC 519.7 DOI: 10.33048/daio.2025.32.811

ON THE BENT FUNCTIONS CLOSEST TO A GIVEN
MAIORANA–MCFARLAND BENT FUNCTION

D. A. Bykov a and N. A. Kolomeec b

Novosibirsk State University,
2 Pirogov Street, 630090 Novosibirsk, Russia

E-mail: a den.bykov.2000i@gmail.com, b nkolomeec@gmail.com

Abstract. Bent functions of 2n variables closest to a given bent func-
tion in the Maiorana–McFarland class are considered. The known crite-
rion for their construction is revised and the method of calculating their
number is refined. We investigate functions such that the number of clos-
est bent functions is approximate to its lower and sharp upper bounds.
The existence of bent functions whose number of closest bent functions
has the same asymptotics as the lower bound is proven. Examples of
functions in the Maiorana–McFarland class are given for which the cal-
culated number of closest bent functions is close to the upper bound.
Attainability of the lower bound is considered, and known necessary
and sufficient conditions are refined. We show that the lower bound
is attained for n equaled to a power of a prime p > 5, as well as for
some other n. A complete classification of functions of 6 variables in the
Maiorana–McFarland class using the number of closest bent functions
is obtained. Tab. 1, bibliogr. 40.

Keywords: bent function, Boolean function, affine subspace, minimum
distance, Maiorana–McFarland class.
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Аннотация. Исследуется пороговая устойчивость задачи с меди-
анным размещением предприятий и фабричным ценообразованием.
Задача пороговой устойчивости имеет следующие отличия от ис-
ходной двухуровневой постановки: в задаче верхнего уровня макси-
мизируется отклонение бюджетов потребителей от ожидаемых зна-
чений при условии, что доход производителя не меньше заданного
порога. Главное отличие исследуемой постановки от задач, чья по-
роговая устойчивость изучалась ранее, заключается в том, что при
фиксированном размещении предприятий задача фабричного цено-
образования NP-трудна в сильном смысле.

Для решения задачи пороговой устойчивости предлагается ал-
горитм на основе спуска с чередующимися окрестностями (VND).
Численное исследование алгоритма проводится на известных при-
мерах и случайно сгенерированных данных. Эксперимент показал,
что идея итеративного вычитания радиуса пороговой устойчивости
из бюджетов потребителей, впервые реализованная в данной работе,
сильно снижает время работы алгоритма. На примерах, для кото-
рых был найден оптимум, алгоритм ошибся в среднем на 0,63%.
На всех примерах алгоритм находит решение в среднем на 2,97%
лучше, чем решатель Gurobi. Табл. 4, ил. 2, библиогр. 33.
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Введение

В настоящей работе продолжаются исследования пороговой устойчи-
вости двухуровневых задач размещения и ценообразования [1–4]. Нефор-
мально устойчивость — это свойство оптимизационной задачи, которое
выражает в том или ином смысле меру её нечувствительности к неопре-
делённости в исходных данных. Любой изученный тип устойчивости свя-
зан с определённым типом неопределённости в исходных данных. В за-
висимости от типа доступной информации такие проблемы исследуются
в рамках следующих направлений: стохастического программирования,
оптимизации на основе нечёткого представления данных, робастной оп-
тимизации, постоптимального анализа чувствительности и устойчивости
решений задач линейного и целочисленного программирования [5–10].

С каждым из классических подходов к анализу надёжности решений
при различных возмущениях исходных данных связаны определённые
проблемы. В основе моделей стохастического программирования лежит
информация о вероятностном распределении случайных параметров, ко-
торая на практике зачастую недоступна. Ряд исследований демонстриру-
ет очень высокую сложность многоэтапных задач стохастического про-
граммирования, которые оказываются PSPACE-трудными [5]. Разработ-
ка моделей на основе нечёткого представления данных существенно бо-
лее сложное занятие, чем классическое математическое моделирование.
Качество получаемых моделей существенно зависит от качества исполь-
зуемых экспертных оценок.

Узкое место робастной оптимизации заключается в том, что её при-
менение ориентируется на учёт худших сценариев [7]. С вычислительной
точки зрения это приводит к решению значительно более сложных оп-
тимизационных задач, чем исходная постановка. Некоторые полиноми-
ально разрешимые задачи становятся NP-трудными в робастной поста-
новке [11–15].

Подход к исследованию неопределённости на основе постоптимально-
го анализа чувствительности и устойчивости решений попросту игнори-
рует влияние неопределённости данных в своих моделях. Сам по себе
анализ чувствительности — только лишь инструмент для анализа устой-
чивости решения, и он не может быть использован для поиска решений,
устойчивых к вариации данных. Таким образом, помимо проблем с по-
лучением информации, которая требуется в том или ином подходе при
анализе устойчивости задачи, возникают и существенные вычислитель-
ные трудности.

Относительно недавно в обсуждаемой области возникло новое направ-
ление исследований, названное пороговой устойчивостью. При исследо-
вании устойчивости задачи Вебера авторы [16] предложили применить
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пороговую модель вместо робастной оптимизации. В качестве неопреде-
лённых данных применён вектор спроса, а для того чтобы не допустить
слишком большого роста транспортных затрат, введён порог, ограничи-
вающий значение целевой функции сверху.

В задаче пороговой устойчивости для заданного набора входных дан-
ных задачи Вебера вместо минимизации транспортных расходов ищет-
ся размещение предприятий с максимальным радиусом устойчивости
и транспортными затратами, не превосходящими заданного бюджетно-
го порога. В [17] эта идея реализована для задачи о p-медиане и для
простейшей задачи размещения предприятий.

Далее в работе используется близкое по смыслу определение радиуса
пороговой устойчивости, в котором с каждым размещением предприя-
тий связывается величина, равная максимальному отклонению спроса
от ожидаемых значений при условии, что выполняется пороговое огра-
ничение. Такое определение восходит к впервые введённому в [18] поня-
тию радиуса устойчивости, на основе которого в [1] предложен радиус
пороговой устойчивости для двухуровневых задач. Небольшой, но ин-
формативный обзор работ, связанных с понятием радиуса устойчивости,
и развитых на его основе подходов к исследованию устойчивости опти-
мизационных задач можно найти в [1, 2, 19–25].

Идея конструкции такова, что с каждой оптимизационной задачей
можно связать задачу пороговой устойчивости, в которой ищется макси-
мальное значение параметра (радиус устойчивости), ограничивающего
нормы вариаций исходных данных исследуемой задачи, и подходящее
допустимое решение базовой постановки, удовлетворяющее пороговому
ограничению. В [1] этот подход обобщён и применён к исследованию по-
роговой устойчивости многоуровневых задач размещения и ценообразо-
вания.

Первые результаты в области пороговой устойчивости двухуровне-
вых задач получены в работах [1–4]. Задачи такого типа образуют но-
вый класс двухуровневых задач, для которых не известны ни точные,
ни приближённые методы решения. Исследование новых классов двух-
уровневых задач несомненно является важной теоретической проблемой,
поскольку при этом разрабатываются новые точные и приближённые ме-
тоды для их решения. Современное состояние дел в области двухуров-
невой оптимизации можно найти в обзорах [26, 27].

В [1] впервые исследована пороговая устойчивость задачи ценообразо-
вания с различными ценовыми политиками и задачи конкурентного це-
нообразования. Обзор по проблемам размещения производства и ценооб-
разования и пороговой устойчивости можно найти в [2]. В [3, 4] изучают-
ся задачи с медианным ограничением на открытие предприятий и двумя
стратегиями ценообразования: равномерной и дискриминационной.
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В текущей работе впервые исследуется пороговая устойчивость NP-
трудной в сильном смысле задачи медианного размещения производ-
ства и фабричного ценообразования [30, 31]. Производитель определя-
ет, в каких местах он должен открыть заданное количество предпри-
ятий, и решает, какие цены на однородную продукцию нужно устано-
вить на каждом из них (фабричное ценообразование), чтобы максими-
зировать прибыль от обслуживания потребителей. Каждый потребитель
имеет ограниченный бюджет, который он готов потратить на покупку
и транспортировку продукта в единичном экземпляре. Потребители дей-
ствуют рационально, т. е. минимизируют свои затраты. Будем полагать,
что транспортные затраты известны и неизменны, а информация о бюд-
жетах неточная, но предполагается, что известны ожидаемые значения.
В таком случае множество сценариев (неопределённость) задаётся как
множество отклонений бюджетов от прогнозируемых значений.

В разд. 1 приводятся постановка и математическая модель исследуе-
мой проблемы. В разд. 2 содержатся результаты о вычислительной слож-
ности задачи пороговой устойчивости. Приближённые алгоритмы для её
решения предлагаются в разд. 3, а в разд. 4 описывается численный экс-
перимент для сравнения разработанных алгоритмов с решателем Gurobi.
В заключении обсуждаются полученные результаты и направления даль-
нейших исследований.

1. Постановка задачи пороговой устойчивости

Прежде чем сформулировать постановку задачи пороговой устойчи-
вости, заметим, что робастная оптимизация и пороговая устойчивость ис-
следуют один тип неопределённости. Однако, в робастной оптимизации
предполагается, что вектор данных задачи не известен, но принадлежит
некоторому множеству, которое описывает неопределённость и называет-
ся множеством сценариев. Оптимальное решение в такой задаче строится
с учётом всех сценариев и фактически сводится к решению минимаксной
задачи, ограничения которой удовлетворяют всем сценариям [7]. В зада-
че пороговой устойчивости предполагается, что вектор данных известен
и необходимо найти такое множество возмущений, для которого найдётся
допустимое решение, удовлетворяющее пороговому ограничению. Иско-
мая область возмущений определяется радиусом пороговой устойчиво-
сти.

В [1] содержится формальное определение радиуса пороговой устой-
чивости и постановка задачи пороговой устойчивости для оптимизаци-
онных задач. Основная идея этого подхода заключается в следующем.
Пороговое значение в таких задачах — это величина дохода, которую ра-
циональный лидер считает достаточной. Далее, радиус устойчивости
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допустимого решения задачи — это такое число, для которого любое од-
новременное возмущение бюджетов клиентов на величину, не превыша-
ющую этого числа, не нарушает допустимости этого решения, а значение
целевой функции на этом решении не превышает значения выбранного
порога.

Пусть V — некоторый порог. В задаче пороговой устойчивости необ-
ходимо найти допустимое решение, которое удовлетворяет пороговому
ограничению и имеет максимальный радиус устойчивости.

Там же приводится модификация этого подхода для двухуровневых
задач и реализация для задач ценообразования. Разделим переменные
двухуровневой задачи на две группы (x, y), где x— переменные верхнего
уровня, y— переменные нижнего уровня. В определении радиуса устой-
чивости заменяем требование допустимости решения при возмущении
бюджетов условием существования y такого, что (x, y) является допу-
стимым решением двухуровневой задачи.

При анализе пороговой устойчивости двухуровневой задачи необходи-
мо найти вектор значений переменных верхнего уровня x с наибольшим
радиусом возможного варьирования входных данных, при котором целе-
вая функция продолжает удовлетворять пороговому ограничению.

В рассматриваемой постановке варьируются не все входные данные,
а только бюджеты потребителей, возмущение которых происходит в сто-
рону их уменьшения. При увеличении бюджетов задача пороговой устой-
чивости становится тривиальной, а радиус пороговой устойчивости стре-
мится к бесконечности. Таким образом, в задаче ниже фиксируем доход
производителя и ищем решение, которое предоставляет доход не менее
зафиксированного.

Приведём содержательную постановку базовой задачи размещения
производства и ценообразования, пороговая устойчивость которой ис-
следуется ниже. Сформулируем её в виде игры Штакельберга «лидер —
последователи». В качестве лидера выступает производитель, который
размещает r предприятий и формирует цены на каждом из них. В каче-
стве последователей — потребители, выбирающие предприятия так, что-
бы минимизировать суммарные затраты на покупку и транспортировку
товаров. При этом потребитель совершает покупку только в том случае,
если эти затраты не превышают его бюджета. Требуется выбрать такое
размещение предприятий и такие цены, при которых доход производи-
теля максимален.

Далее рассматривается оптимистическая постановка двухуровневой
задачи, для чего необходимо ввести следующее соглашение. Если у по-
требителя есть несколько предприятий с одинаковой минимальной сум-
мой платежей, то он выберет предприятие с минимальными транспорт-
ными затратами.
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Обычно в подобных постановках рассматриваются три следующие
стратегии ценообразования [32]:
• равномерное (uniform pricing) — на всех предприятиях устанавлива-

ется одна цена;
• фабричное (mill pricing) — на каждом предприятии устанавливается

своя цена;
• дискриминационное (discriminatory pricing) — на каждом предприя-

тии для каждого потребителя устанавливается своя цена.
В настоящей статье рассматривается фабричное ценообразование.
Отличие задачи пороговой устойчивости от базовой постановки — в за-

ранее заданном доходе производителя, который определяет пороговое
ограничение, и в наличии неопределённости в бюджетах потребителей,
для которой необходимо предусмотреть максимально возможное откло-
нение от ожидаемых (определённых заранее) бюджетов.

Для того чтобы сформулировать математическую модель задачи по-
роговой устойчивости, введём следующие обозначения и переменные.

Обозначения:
• I = {1, . . . , n}— множество возможных мест для открытия пред-

приятий;
• J = {1, . . . ,m}— множество потребителей;
• r ∈ Z — число размещаемых предприятий;
• bj ∈ Z— бюджет потребителя j;
• cij ∈ Z— транспортные затраты потребителя j при обслуживании

на предприятии i;
• V ∈ Z — доход производителя.
Переменные:
• ρ ∈ Q+ — радиус пороговой устойчивости;
• pi ∈ Q+ — цена товара на предприятии i;

• xij =
®
1, если потребитель j обслуживается на предприятии i,

0 иначе.

• yi =
®
1, если предприятие i открыто,

0 иначе.
Двухуровневая смешанно целочисленная квадратичная математиче-

ская модель задачи пороговой устойчивости имеет следующий вид:

ρ→ max
p,y,x,ρ

, (1)
∑

i∈I

∑

j∈J

pixij > V, (2)

∑

i∈I

yi = r, (3)
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yi ∈ {0, 1}, pi, ρ ∈ Q+, x ∈ F∗(p, y, ρ), i ∈ I, j ∈ J, (4)

где F∗(p, y, ρ)— множество оптимальных решений задачи нижнего уров-
ня: ∑

i∈I

∑

j∈J

(bj − cij − ρ− pi)xij → max
x
, (5)

∑

i∈I

xij 6 1, j ∈ J, (6)

xij 6 yi, i ∈ I, j ∈ J, (7)

xij ∈ {0, 1}, i ∈ I, j ∈ J. (8)

Максимизируя целевую функцию (1) на верхнем уровне, получим
максимально возможное отклонение от ожидаемых (данных) размеров
бюджетов. Неравенство (2) устанавливает пороговое ограничение, га-
рантирующее, что доход производителя не меньше заданного, а равен-
ство (3) требует, чтобы было открыто ровно r предприятий. Условия (4)
определяют область значений переменных верхнего уровня и фиксируют
фундаментальное свойство двухуровневых задач: переменные нижнего
уровня x принимают свои значения из множества оптимальных решений
задачи нижнего уровня. Таким образом, в работе исследуется оптими-
стический вариант постановки. Целевая функция нижнего уровня (5)
представляет собой сумму неизрасходованных потребителями средств,
а ограничения (6)–(8) гарантируют, что каждый потребитель обслужи-
вается не более чем одним предприятием производителя, которое должно
быть открыто.

2. Вычислительная сложность задачи пороговой устойчивости

Используемые далее понятия и обозначения классов сложности, свя-
занные с полиномиальной и аппроксимационной иерархиями, можно най-
ти в [2, 4, 33]. Будем предполагать, что переменные ρ и p целочисленные.
Обозначим через Dρ и D стандартные задачи распознавания для зада-
чи (1)–(8) и базовой задачи соответственно. Приведём доказательство
следующей теоремы в варианте, который демонстрирует тесную связь
между этими задачами распознавания.

Теорема 1. Задача Dρ NP-полна в сильном смысле.

Доказательство. Будем следовать идее, использованной при обос-
новании аналогичного результата в [4], при этом необходимо учесть осо-
бенности новой постановки. Покажем, что задача Dρ полиномиально сво-
дится к некоторому модифицированному варианту задачи D. Для этого
рассмотрим произвольный пример с ответом «да» задачи Dρ с некоторой
целой константой ρ̂.
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Из определения задачи Dρ следует, что существует такое допустимое
решение (ρ, y, p, x), что ρ > ρ̂. Можно считать, что ρ = ρ̂. Действительно,
если ρ > ρ̂, то при уменьшении ρ до ρ̂ при фиксированных (y, p) будет
изменяться только оптимальное решение x задачи нижнего уровня, так
как могут появиться клиенты, бюджеты которых увеличатся, и они будут
обслужены на открытых предприятиях. Доход лидера при этом только
возрастёт, т. е. пороговое ограничение не будет нарушено.

Тем самым существование для некоторого целого ρ̂ такого допусти-
мого решения (ρ, y, p, x), что ρ > ρ̂, эквивалентно существованию такого
размещения предприятий y и такого набора цен, при которых в базовой
задаче с бюджетами bj − ρ̂, j ∈ J, множеством открытых предприятий
{i | yi = 1} и множеством цен p доход лидера больше заданного порога V.

Таким образом, для заданного целого ρ̂ требуемые в базовой задаче
размещение y и набор фабричных цен p могут быть найдены за неде-
терминированное полиномиальное время, если в задаче Dρ ответ «да».
Отсюда следует, что задача Dρ принадлежит классу NP.

Полнота задачи Dρ в классе NP следует из полиномиальной сводимо-
сти задачи D к задаче Dρ. Действительно, в D для заданного порога V
надо найти допустимое решение (y, p, x), которое приносит лидеру доход
не меньше порога. В качестве исходных данных задачи Dρ возьмём ρ̂ = 0
и исходные данные задачи D. Из результатов, полученных в [2], следует,
что задача D NP-полна в сильном смысле. Теорема 1 доказана.

Теорема 2. Для задачи (1)–(8) не существует детерминированных

полиномиальных приближённых алгоритмов с абсолютной или относи-

тельной оценкой уклонения от оптимального решения, если P 6= NP.

Доказательство. Предположим, что существует детерминирован-
ный полиномиальный приближённый алгоритм для задачи (1)–(8). По-
кажем, что тогда задача D полиномиально разрешима. Рассмотрим про-
извольный вход данной задачи с порогом V. Применим приближённый
алгоритм к входу задачи (1)–(8), который получается из входа задачи D
так же, как в доказательстве теоремы 1. Если в задаче D для порога V
ответ «да», то алгоритм выдаст некоторое приближённое допустимое ре-
шение (ρ, y, p, x) задачи (1)–(8). Если ρ > 0, то, рассуждая как в доказа-
тельстве теоремы 1, получим её допустимое решение (0, y, p, x̂), которое
подтверждает, что в задаче D для текущего входа ответ «да». Таким
образом получаем полиномиальный алгоритм для задачи D, что проти-
воречит условию P 6= NP. Теорема 2 доказана.

Сформулируем ещё одно утверждение, которое следует из доказанных
теорем и позволяет уточнить возможности полиномиальных алгоритмов
относительно исследуемой задачи.
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Следствие 1. Для задачи (1)–(8) можно разработать точный поли-

номиальный алгоритм только в классе детерминированных алгоритмов

с оракулами из класса NP, если P 6= NP.

Доказательство. Из теорем 1 и 2 следует, что задача (1)–(8) при-
надлежит классу NPO, причём лежит выше класса Exp-APX. В силу
предположения классы NPO и PO не совпадают, следовательно, для за-
дачи (1)–(8) не существует полиномиального детерминированного алго-
ритма. Из включения NPO ⊆ ∆P

2 O, где ∆P
2 O — класс оптимизационных

задач, разрешимых детерминированными полиномиальными алгоритма-
ми с оракулами из класса NP, следует требуемый результат. Следствие 1
доказано.

Полученные результаты о неаппроксимируемости утверждают, что
невозможно разработать детерминированные полиномиальные точные
и приближённые алгоритмы с оценками относительного уклонения. Это
означает, что исследуемая задача пороговой устойчивости либо NPO-
полна относительно подходящей сводимости, сохраняющей аппроксими-
руемость, либо лежит в промежуточном классе задач выше класса Exp-
APX.

3. Алгоритмы

При разработке алгоритмов для решения задачи (1)–(8) использована
VND-эвристика, идея которой содержится в [28]. Позднее эта эвристика
применена в [29–31] для разработки эффективных алгоритмов решения
задачи размещения и фабричного ценообразования. В настоящей работе
для решения задачи пороговой устойчивости разработана модификация
этой эвристики — двухэтапная VND-эвристика. Для определения и вы-
бора лучшего размещения необходимы критерии их сравнения.

Введём некоторые вспомогательные величины и опишем алгоритм
определения радиуса пороговой устойчивости на основе поиска цены. Ес-
ли для поиска цены применить точный алгоритм, то алгоритм опреде-
ления радиуса пороговой устойчивости будет точным. Для поиска цены
при фиксированном размещении используем VND-эвристику, основыва-
ясь на идеях [30, 31].

Пусть d(y, p) = V −∑
i∈I

∑
j∈J

xijpi — сверхприбыль производителя относи-

тельно порога V при фиксированном размещении; c(y, p) =
∑
i∈I

∑
j∈J

xij —

число обслуживаемых клиентов при фиксированном размещении; B =
(b1, . . . , bm)— вектор бюджетов потребителей; PC(y,B)— алгоритм поис-
ка цены при фиксированном размещении [30, 31]. Для поиска радиуса
пороговой устойчивости использовался следующий алгоритм RC(y,B).
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Алгоритм 1. Алгорим RC(y,B)

Вход: y, B.
Выход: ρ— радиус пороговой устойчивости.
1: ρ← 0; p← PC(y,B);
2: if d(y, p) < 0 then stop;
3: else ∆ρ← d(y, p)/c(y, p); ρ← ρ+∆ρ;

4: if ∆ρ < min
i∈I

pi then stop;

5: else B ← B − (∆ρ, . . . ,∆ρ); p←PC(y,B);

6: goto 2;

Предлагаемая ниже реализация алгоритма для поиска цены основа-
на на VND-эвристике, поэтому в функции PC и RC добавим аргумент
flip, ограничивающий число просматриваемых окрестностей. Этот аргу-
мент используется для остановки алгоритма, а именно для процедуры
улучшения, описанной в [4].

Если алгоритм остановился после шага 1, то считаем размещение y
недопустимым. На шаге 2 выполняется проверка возможности увеличить
радиус пороговой устойчивости, и если сверхприбыль положительная,
то увеличиваем радиус. На шаге 4 происходит проверка необходимости
поиска цены, и если есть необходимость, то на шаге 5 ищем цены отно-
сительно новых бюджетов. Тем самым на каждой итерации алгоритма
имеем бюджеты потребителей, содержащие радиус пороговой устойчиво-
сти, размещение и цены для него такие, что доход производителя больше
порога V, т. е. получаем допустимое решение задачи пороговой устойчи-
вости.

Пусть y1 и y2 — различные размещения, для сравнения которых выпи-
шем два критерия. Первый критерий выбирает размещение, при котором
доход производителя больше, а второй — то, для которого больше радиус
пороговой устойчивости.

Критерий 1. Полагаем p1 = PC(y1, B,flip), p2 = PC(y2, B,flip), и ес-
ли
∑
i∈I

∑
j∈J

p1ixij >
∑
i∈I

∑
j∈J

p2ixij , то считаем размещение y1 лучше y2.

Критерий 2. Полагаем ρ1 = RC(y1, B,flip), ρ2 = RC(y2, B,flip), и ес-
ли ρ1 > ρ2, то считаем размещение y1 лучше чем y2.

С целью построения основного алгоритма для размещения y опреде-
лим окрестность k-Swap(y) и процедуру улучшения k-Improve(y), как это
сделано в [3]. Здесь k, k ∈ N— некоторые параметры. Для сравнения раз-
мещений в окрестности используем критерии 1 и 2. Основной алгоритм
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Алгоритм 2. Алгорим VND1

Вход: Imax, B, k, flip.
Выход: размещение y и радиус пороговой устойчивости ρ.
1: I ← 0; y ← rand

{
y′ ∈ {0, 1}n | ∑

i
y′i = r

}
— случайный булев вектор;

ρ← RC(y,B,flip); B ← B − (ρ, . . . , ρ);
2: применить локальный поиск для 1-Swap(y) и найти локальный опти-

мум y∗;
3: ρ∗ ← RC(y∗, B,flip); B ← B − (ρ∗, . . . , ρ∗); ρ← ρ+ ρ∗;
4: I ← I + 1; (ŷ, ρ̂)← k-Improve(y∗);
5: if ŷ = y∗ or I > Imax then stop;
6: else ρ̂← RC(ŷ, B,flip); B ← B − (ρ̂, . . . , ρ̂); ρ← ρ+ ρ̂; y ← ŷ;

7: goto 2;

представим в виде вложенной VND-эвристики с двумя этапами. На пер-
вом этапе выбираем размещение, фиксируем его и строим относительно
него окрестность. На втором этапе просматриваем элементы окрестности
и для каждого размещения считаем доход производителя или радиус по-
роговой устойчивости — в зависимости от применяемого критерия.

В алгоритме VND1 для выбора наилучшего размещения используем
критерий 1. Для каждого размещения y из окрестности 1-Swap(y) при
помощи алгоритма PC с параметром flip = 1 находим доход производи-
теля и выбираем то размещение, на котором доход производителя наи-
больший. Далее вычисляем радиус пороговой устойчивости при помощи

Алгоритм 3. Алгорим VND2

Вход: Imax, B, k, flip.
Выход: размещение y и радиус пороговой устойчивости ρ.
1: I ← 0; y ← rand

{
y′ ∈ {0, 1}n | ∑

i
y′i = r

}
— случайный булев вектор;

ρ← RC(y,B,flip); B ← B − (ρ, . . . , ρ);
2: применить локальный поиск для 1-Swap(y) и найти локальный опти-

мум y∗ с радиусом пороговой устойчивости ρ∗ = RC(y∗, B, 1);
3: B ← B − (ρ∗, . . . , ρ∗); ρ← ρ+ ρ∗;
4: if flip > 1 then

5: ρ∗∗ ← RC(y∗, B,flip); B ← B − (ρ∗∗, . . . , ρ∗∗); ρ← ρ+ ρ∗∗;

6: I ← I + 1; (ŷ, ρ̂)← k-Improve(y∗);
7: if ŷ = y∗ or I > Imax then stop;
8: else B ← B − (ρ̂, . . . , ρ̂); ρ← ρ+ ρ̂; y ← ŷ;

9: goto 2;
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алгоритма RC. Отметим, что алгоритме VND1 просмотр окрестности за-
нимает меньшее время, чем в VND2, так как здесь цены для размещения
вычисляются один раз.

В алгоритме VND2 на шаге 2 применяется локальный поиск в окрест-
ности 1-Swap(y). Для каждого размещения из окрестности вычисляем
радиус пороговой устойчивости при помощи алгоритма RC с парамет-
ром flip = 1 и при помощи критерия 2 выбираем локальный оптимум.
Если использовать параметр flip, переданный на вход, то поиск локаль-
ного оптимума сильно замедлится. Для выбранного на шаге 2 локального
оптимума пытаемся улучшить результат на шаге 4, используя алгоритм
RC и параметр flip, полученный на входе алгоритма.

Таблица 1

Результаты численного эксперимента n = 100, m = 40, r = 5

Пример Gurobi VND1 VND2 VND′

2

№ % gap Время gap Время gap Время gap Время

F
L
P

r0
1

10 0 1,1+2 6,5−3 1,5+0 0 7,3−1 5,6−3 1,1+2

30 0 4,2+3 0 1,8+1 0 8,0+0 3,6−2 1,3+2

50 9,5−3 4,3+4 4,7−3 2,7+1 1,4−2 8,3+0 1,4−2 1,5+2

70 1,3−2 4,3+4 3,5−3 2,0+1 4,6−2 2,2+1 3,2−4 1,5+2

90 7,1−2 4,3+4 −3,2−2 5,6+1 −6,7−2 2,8+1 −6,7−2 2,1+2

F
L
P

r0
2

10 0 1,1+2 1,3−9 4,8+0 1,3−9 1,4+0 1,2−2 2,6+2

30 0 4,8+3 1,6−2 1,3+1 0 3,9+0 7,1−2 1,6+2

50 5,0−3 4,3+4 4,7−3 2,3+1 −1,8−4 8,9+0 3,4−2 1,6+2

70 1,1−2 4,3+4 9,1−2 1,0+2 7,0−2 1,8+1 2,1−4 1,4+2

90 6,4−2 4,3+4 2,9−1 1,4+2 2,8−2 2,7+1 2,8−2 1,8+2

F
L
P

r0
3

10 0 8,3+1 0 1,1+0 0 6,4−1 7,5−3 1,3+2

30 0 2,9+3 6,9−4 9,7+0 2,3−3 4,3+0 5,3−2 8,0+1

50 4,2−3 4,3+4 −5,4−5 3,2+1 1,7−2 6,8+0 9,8−3 1,5+2

70 1,8−2 4,3+4 1,9−4 5,2+1 1,9−4 1,2+1 1,9−4 9,4+1

90 6,8−2 4,3+4 2,8−1 6,8+1 7,7−4 1,7+1 7,7−4 1,0+2

F
L
P

r0
4

10 0 5,6+1 3,6−3 2,3+0 3,6−3 3,8−1 6,0−3 5,4+1

30 0 2,3+2 2,9−4 4,3+0 6,9−3 1,7+0 7,9−3 1,1+2

50 0 1,6+3 0 2,3+1 0 4,0+0 3,0−2 7,3+1

70 0 8,0+3 0 3,9+1 7,4−2 7,0+0 2,2−2 8,8+1

90 3,7−2 4,3+4 2,7−1 6,8+1 5,9−3 1,6+1 9,1−2 1,4+2

F
L
P

r0
5

10 0 1,1+2 7,6−3 9,7−1 4,0−3 9,3−1 1,2−2 2,3+2

30 0 2,4+3 8,5−3 2,1+1 1,0−2 3,3+0 4,2−2 2,1+2

50 0 1,3+4 7,4−3 9,3+1 1,5−2 9,2+0 0 4,4+2

70 7,9−3 4,3+4 7,1−5 1,4+2 1,5−2 3,0+1 1,2−1 2,5+2

90 5,4−2 4,3+4 −1,2−1 1,2+2 −2,0−1 4,7+1 −9,1−2 3,1+2
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Таблица 1 (окончание)

Пример Gurobi VND1 VND2 VND′

2

№ % gap Время gap Время gap Время gap Время

F
L
P

r0
6

10 0 6,3+1 0 1,7+0 0 7,3−1 2,3−2 9,6+1

30 0 3,1+3 9,0−3 1,7+1 0 3,1+0 4,8−2 8,1+1

50 0 1,0+4 9,1−3 1,6+1 1,1−2 6,3+0 6,2−2 1,1+2

70 9,7−3 4,3+4 1,2−1 6,6+1 1,3−4 2,7+1 9,7−2 8,2+1

90 5,2−2 4,3+4 2,6−1 7,9+1 6,1−2 4,5+1 −1,4−2 1,6+2

F
L
P

r0
7

10 0 8,9+1 1,0−4 1,6+0 6,5−9 7,2−1 4,3−3 2,5+2

30 0 2,7+3 8,7−3 1,5+1 6,6−3 8,5+0 5,1−2 2,6+2

50 0 1,5+4 1,3−2 1,7+1 0 8,4+0 4,9−2 1,2+2

70 7,4−3 4,3+4 −9,0−3 5,3+1 −1,7−2 2,5+1 −1,3−2 2,7+2

90 3,6−2 4,3+4 1,4−1 6,8+1 9,3−3 2,6+1 9,3−3 1,4+2

F
L
P

r0
8

10 0 5,6+1 0 1,6+0 0 6,1−1 4,9−3 2,7+2

30 0 3,9+3 0 1,2+1 0 7,4+0 2,9−1 1,3+2

50 2,1−3 4,3+4 1,6−4 5,4+1 9,2−3 9,1+0 3,5−2 2,1+2

70 8,6−3 4,3+4 3,3−3 7,1+1 3,3−3 2,8+1 3,2−2 2,0+2

90 7,2−2 4,3+4 1,5−1 1,6+2 −8,6−2 3,1+1 −7,6−2 1,3+2

F
L
P

r0
9

10 0 7,3+1 1.4e-14 1,0+0 1.4e-14 6,0−1 3,1−1 1,9+0

30 0 1,9+3 8,8−3 1,5+1 2,6−3 2,6+0 4,6−2 1,2+2

50 0 6,3+3 0 3,1+1 6,9−3 6,0+0 1,0−3 1,1+2

70 2,7−3 4,3+4 2,4−2 3,9+1 2,1−4 1,0+1 2,1−4 2,1+2

90 3,2−2 4,3+4 1,9−1 6,5+1 5,1−4 1,7+1 2,1−2 9,6+1

F
L
P

r1
0

10 0 5,5+1 8,9−9 3,2+0 1,0−3 1,3+0 5,6−3 2,3+2

30 0 3,2+3 2,2−3 1,4+1 4,8−3 3,9+0 4,7−3 1,5+2

50 8,0−4 4,3+4 5,2−3 6,6+1 1,8−4 8,7+0 1,7−3 9,5+1

70 5,7−3 4,3+4 2,8−4 5,2+1 2,8−4 1,6+1 2,8−4 9,8+1

90 6,0−2 4,3+4 2,1−1 7,8+1 −9,1−4 2,5+1 −9,1−4 1,1+2

В обоих алгоритмах найденный радиус пороговой устойчивости сразу
вычитается из бюджетов потребителей. При вызове алгоритма RC внут-
ри VND вектор бюджетов меняется локально внутри RC. Вычитание ра-
диуса из бюджетов не влияет на результат алгоритма VND (пройденный
им путь), но сильно снижает время работы. В численном эксперимен-
те сравним алгоритм VND2 с его версией, реализованной без вычитания
радиуса пороговой устойчивости из бюджетов потребителей.

Предложенный алгоритм допускает использование мультистарта: за-
пуск на разных стартовых решениях и выбор лучшего из найденных ре-
шений. Результаты такого подхода показаны далее.
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4. Численный эксперимент

Для численного эксперимента использованы входные данные, взятые
из библиотеки «Дискретные задачи размещения», и данные, сгенериро-
ванные случайным образом. Сначала готовим входные данные для ис-
ходной задачи, решаем её и в результате определяем максимально воз-
можный доход производителя V. Далее фиксируем вход исходной задачи,
берём некоторую часть от V в качестве порогового ограничения и по-
лучаем вход для задачи пороговой устойчивости. Варьируя пороговое
ограничение таким образом, для одного входа исходной задачи можно
сгенерировать несколько входов задачи пороговой устойчивости. Более
подробно эта процедура описана в [3].

Таблица 2

Результаты численного эксперимента n = 100, m = 100, r = 5

Пример Gurobi VND1 VND2 VND′

2

№ % gap Время gap Время gap Время gap Время

F
L
P

r0
1

10 0 5,4+2 3,3−9 2,3+1 3,3−9 4,2+0 1,1−2 1,3+3

30 0 1,3+4 8,0−4 6,6+1 0 2,4+1 8,0−4 1,2+3

50 1,1−2 4,3+4 4,1−3 2,1+2 4,1−3 5,8+1 −4,2−5 1,1+3

70 1,6−2 4,3+4 −4,5−3 3,9+2 2,2−4 1,4+2 −6,6−3 8,5+2

90 1,2−1 4,3+4 1,8−1 6,2+2 −3,7−2 3,0+2 −1,8−2 1,1+3

F
L
P

r0
2

10 0 6,2+2 0 2,5+1 0 1,1+1 9,2−3 2,1+3

30 7,1−3 4,3+4 5,3−3 1,5+2 5,5−3 5,7+1 4,8−2 1,3+3

50 1,7−2 4,3+4 −2,9−2 4,1+2 −3,4−2 1,3+2 −3,4−2 3,8+3

70 2,4−2 4,3+4 −4,5−2 4,0+2 −4,8−2 1,2+2 −4,5−2 2,2+3

90 1,0−1 4,3+4 2,5−1 7,1+2 1,7−1 3,6+2 −4,1−2 1,1+3

F
L
P

r0
3

10 0 4,0+2 1,7−3 1,4+1 0 4,7+0 1,0−2 9,2+2

30 0 9,2+3 0 1,0+2 0 2,0+1 2,0−2 2,0+3

50 1,3−2 4,3+4 3,9−3 3,0+2 6,9−4 5,7+1 6,1−5 1,7+3

70 2,3−2 4,3+4 −5,2−2 4,2+2 −4,6−2 9,1+1 9,1−3 1,2+3

90 8,6−2 4,3+4 2,9−1 5,0+2 1,5−1 1,5+2 1,0−1 1,9+3

F
L
P

r0
4

10 0 4,2+2 2,0−4 1,4+1 2,2−3 6,5+0 1,2−2 1,0+3

30 0 1,2+4 0 1,8+2 0 3,6+1 4,7−2 2,3+3

50 1,6−2 4,3+4 −9,2−5 4,1+2 −9,2−5 6,8+1 1,0−2 1,0+3

70 3,6−2 4,3+4 −1,5−2 3,3+2 6,8−3 1,5+2 −1,5−2 1,6+3

90 1,1−1 4,3+4 1,4−1 9,6+2 −1,3−1 3,1+2 −1,3−1 2,1+3

F
L
P

r0
5

10 0 5,2+2 1,5−8 9,0+0 1,5−8 8,2+0 3,7−3 1,4+3

30 0 1,1+4 0 9,2+1 0 3,2+1 1,6−2 9,6+2

50 1,1−2 4,3+4 5,3−3 1,8+2 8,5−3 5,1+1 1,2−2 1,4+3

70 1,5−2 4,3+4 6,7−3 2,5+2 1,5−2 1,6+2 6,7−5 9,6+2

90 7,8−2 4,3+4 1,9−1 3,9+2 0 2,2+2 0 1,2+3
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Таблица 2 (окончание)

Пример Gurobi VND1 VND2 VND′

2

№ % gap Время gap Время gap Время gap Время

F
L
P

r0
6

10 0 6,1+2 1,8−3 1,3+1 7,0−10 5,2+0 4,6−3 1,7+3

30 0 1,0+4 0 1,3+2 0 2,4+1 6,4−3 1,5+3

50 4,6−3 4,3+4 −1,5−2 3,4+2 −1,5−2 8,0+1 −1,3−2 1,0+3

70 1,4−2 4,3+4 2,2−2 4,4+2 −4,4−2 1,2+2 −3,4−2 1,6+3

90 1,0+7 4,3+4 −1,0+0 9,1+2 −1,0+0 1,9+2 −1,0+0 1,0+3

F
L
P

r0
7

10 0 4,8+2 7,6−4 2,2+1 7,6−4 4,0+0 3,6−3 1,7+3

30 0 9,1+3 0 8,4+1 0 2,4+1 1,5−2 8,4+2

50 5,0−3 4,3+4 8,3−3 2,6+2 8,0−3 5,8+1 −1,6−4 1,3+3

70 2,9−2 4,3+4 −1,9−3 4,0+2 1,2−2 1,4+2 2,7−2 8,3+2

90 4,5−2 4,3+4 2,5−1 5,0+2 2,1−2 1,8+2 −9,1−2 1,3+3

F
L
P

r0
8

10 0 4,6+2 3.5e-14 1,8+1 3.7e-14 4,0+0 1,6−2 8,2+2

30 0 1,2+4 0 5,6+1 0 4,3+1 4,4−3 8,4+2

50 1,4−2 4,3+4 9,5−5 1,8+2 2,8−2 5,2+1 1,3−2 1,7+3

70 2,9−2 4,3+4 −1,2−2 2,5+2 4,4−3 9,7+1 −2,1−2 8,7+2

90 1,3−1 4,3+4 8,1−2 8,2+2 −1,6−1 2,5+2 −1,6−1 9,5+2

F
L
P

r0
9

10 0 7,4+2 1,5−3 2,5+1 0 4,3+0 2,1−3 9,0+2

30 0 1,1+4 0 9,7+1 0 2,4+1 5,1−2 7,2+2

50 1,9−2 4,3+4 −3,3−2 3,7+2 −4,0−2 1,0+2 1,1−1 5,4+2

70 3,9−2 4,3+4 −5,4−2 3,8+2 −5,0−2 9,8+1 −6,1−2 6,1+2

90 1,4−1 4,3+4 2,1−1 5,0+2 −5,1−2 2,7+2 −5,1−2 5,7+2

F
L
P

r1
0

10 0 6,8+2 3,0−4 1,6+1 2,8−9 8,3+0 3,0−4 1,4+3

30 2,1−3 4,3+4 −3,3−3 1,3+2 −8,1−5 5,0+1 1,4−2 1,3+3

50 1,3−2 4,3+4 3,1−3 2,0+2 1,2−4 1,6+2 1,2−4 1,4+3

70 1,7−2 4,3+4 −1,0−2 6,6+2 4,9−3 1,2+2 −2,6−2 1,1+3

90 9,4−2 4,3+4 4,3−1 4,7+2 −3,0−3 2,0+2 5,4−2 2,0+3

Сначала рассмотрим примеры задач из библиотеки. Для поиска точ-
ного решения применяем решатель Gurobi версии 10. Тестирование про-
изводится на сервере с двумя процессорами AMD EPYC 7502 32-Core
и 512 ГБ оперативной памяти. При этом решатель Gurobi может исполь-
зовать свободные ядра, и каждую задачу решаем параллельно на 7 яд-
рах. Время работы решателя для каждой задачи ограничено 12 ч. Ос-
новной алгоритм выполняем одним потоком, т. е. на одном ядре.

Эмпирически подобраны наилучшие параметры k = 2 и flip = 2, кото-
рые применены в дальнейших экспериментах. Результаты, отражённые
в табл. 1 и 2, получены на входных данных из библиотеки «Дискретные
задачи размещения», а в табл. 3 и 4 — на входных данных, сгенериро-
ванных случайным образом. Полученные значения представлены в экс-
поненциальной записи, при этом порядок числа приводится в нижнем



58 М. Е. Водян, А. А. Панин, А. В. Плясунов

индексе мантиссы для экономии места. В колонке % указана доля мак-
симального дохода производителя, взятая в качестве порога V. Красным
отмечено оптимальное значение gap, а синим — значение gap в случае,
если решение предложенного алгоритма лучше в сравнении с решением
Gurobi.

Размерность каждого входа в табл. 1 фиксирована числами n = 100,
m = 40, r = 5. VND′

2 — это версия алгоритма VND2 без вычитания ради-
уса пороговой устойчивости из бюджетов потребителей. Время работы
VND′

2 больше, чем VND2, на всех примерах в среднем в 13 раз. Уско-
рение происходит в силу того, что при вычитании радиуса пороговой
устойчивости из бюджетов потребителей алгоритм чаще останавливает-
ся на шаге 4 алгоритма RC, тем самым экономя время на поиске цен. В 24
из 50 случаев решатель не смог найти оптимального решения. Алгоритм
VND2 с критерием 2 находит в среднем более качественное решение.

Размерность каждого входа в табл. 2 фиксирована числами n = 100,
m = 100, r = 5. Как в предыдущем случае, время работы алгоритма

Таблица 3

Результаты эксперимента на средней и большой размерностях

Пример Gurobi VND1 VND2 VND′

2

№ n m r V % gap Время gap Время gap Время gap Время

1 100 100 10

621 10 3,2−3 4,3+4 −7,5−3 6,4+4 −8,7−5 4,8+3 2,0−1 2,1+4

1863 30 9,2−3 4,3+4 −3,3−2 1,4+5 −2,9−2 1,4+4 −6,4−3 1,1+4

3105 50 1,8−2 4,3+4 −2,5−2 1,5+5 −1,3−2 1,5+4 −1,4−2 2,6+4

4347 70 2,2−2 4,3+4 −5,9−2 1,6+5 −6,0−2 1,9+4 −5,1−2 1,3+4

5589 90 1,0+7 4,3+4 −1,0+0 1,1+5 −1,0+0 1,8+4 −1,0+0 6,2+4

2 20 20 10

101 10 0 9,7+0 1,5−2 4,6−1 1,3−8 3,1−1 5,8−3 1,2+1

303 30 0 2,3+1 2,4−1 3,1+0 2,1−1 7,7−1 2,4−1 5,7+0

505 50 0 2,5+2 7,9−2 1,4+1 7,5−2 1,6+0 7,0−2 1,6+1

707 70 0 4,6+2 1,2−1 2,8+0 5,0−2 2,2+0 3,7−2 3,7+0

909 90 0 5,1+2 8,8−2 1,1+1 1,5−1 2,5+0 5,0−2 4,1+1

3 20 20 15

128 10 0 2,6+1 2,3−2 1,1+1 1,5−1 4,1−1 1,7−1 4,1+1

384 30 0 9,9+1 2,0−2 4,9+0 1,5−2 3,4+0 1,3−1 7,0+0

641 50 0 8,4+1 1,1−1 2,2+1 1,1−1 3,5+0 9,9−2 8,3+0

898 70 0 1,5+2 1,5−1 4,1+0 8,5−2 5,6+0 8,5−2 3,7+1

1154 90 0 1,3+2 3,6−1 2,8+1 2,1−1 3,2+0 1,9−1 3,4+1

4 40 40 10

288 10 2,0−4 4,3+4 5,9−3 1,6+2 4,8−3 2,6+1 7,7−2 1,1+3

866 30 1,3−3 4,3+4 1,6−3 5,8+2 1,2−2 2,2+2 1,6−2 1,8+3

1443 50 2,6−3 4,3+4 −2,2−3 1,0+3 3,5−3 1,2+2 1,1−2 8,6+2

2020 70 4,0−3 4,3+4 3,7−3 1,1+3 −6,7−3 1,3+2 1,4−3 1,2+3

2598 90 5,9−3 4,3+4 1,5−2 1,1+3 7,0−4 2,5+2 8,8−2 5,8+2
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Таблица 3 (окончание)

Пример Gurobi VND1 VND2 VND′

2

№ n m r V % gap Время gap Время gap Время gap Время

5 40 40 15

225 10 0 2,3+2 1,5−2 2,3+2 1,5−2 2,1+1 9,1−3 2,9+3

677 30 1,2−3 4,3+4 −7,4−4 1,0+3 7,4−4 1,9+2 4,0−2 2,7+3

1129 50 3,0−3 4,3+4 8,3−4 2,5+3 1,2−2 2,1+2 2,8−3 5,4+2

1581 70 4,7−3 4,3+4 1,7−2 1,4+3 −1,7−2 5,4+2 1,4−2 1,2+3

2033 90 5,9−3 4,3+4 1,6−1 1,7+3 1,5−1 4,8+2 −3,6−3 8,5+2

6 60 60 10

411 10 1,0−3 4,3+4 5,4−3 4,8+3 3,6−3 2,1+2 1,5−1 1,2+4

1234 30 4,6−3 4,3+4 −1,9−2 6,6+3 −1,6−2 7,6+2 −9,6−3 5,5+3

2058 50 8,9−3 4,3+4 −7,4−3 5,4+3 −1,5−2 1,4+3 5,2−3 4,0+3

2881 70 1,0−2 4,3+4 1,8−2 1,2+4 3,0−2 4,0+3 4,6−2 4,9+3

3704 90 5,0−2 4,3+4 −1,8−1 1,8+4 −1,3−1 2,8+3 −1,4−1 3,6+3

7 60 60 15

381 10 1,5−3 4,3+4 8,9−3 2,0+3 3,2−3 2,0+2 6,5−3 2,0+4

1143 30 3,5−3 4,3+4 −1,2−2 3,6+4 −1,0−2 4,1+3 −5,5−3 1,3+4

1906 50 7,4−3 4,3+4 8,4−2 2,0+4 7,3−2 3,7+3 8,0−2 1,4+4

2669 70 1,8−2 4,3+4 −5,3−2 3,6+4 −4,5−2 5,1+3 −7,6−3 8,1+3

3431 90 5,0−2 4,3+4 −8,9−2 9,8+3 6,3−3 4,0+3 −3,1−2 1,2+4

8 90 90 10

583 10 1,5−3 4,3+4 1,4−3 4,9+3 1,8−3 5,7+2 7,8−2 1,6+4

1749 30 6,6−3 4,3+4 −7,1−3 7,5+3 −1,0−2 3,4+3 −1,7−2 3,2+4

2915 50 4,6−3 4,3+4 −3,1−2 1,7+4 −4,7−2 1,1+4 −4,0−2 1,3+4

4081 70 8,2−3 4,3+4 −5,0−2 3,4+4 −5,1−2 1,5+4 −1,8−2 3,2+4

5247 90 5,1−2 4,3+4 −1,4−1 3,7+4 −1,6−1 1,2+4 −5,8−2 1,9+4

VND′
2 в сравнении с VND2 больше на всех примерах в среднем в 13 раз.

В 32 случаях из 50 решателю не удалось найти оптимального решения,
а в одном случае — хотя бы допустимого. Алгоритм VND2 c критерием 2
в среднем находит решение лучше. Это происходит, скорее всего, в силу
того, что критерий 2 нацелен на поиск максимального радиуса, а не до-
хода производителя. Время работы решателя значительно превышает
время работы алгоритмов VND.

Согласно табл. 3 на примерах средней или большой размерности ал-
горитм VND работает продолжительное время. Здесь отчётливо видно
различие во времени работы алгоритмов VND2 и VND′

2. Количество най-
денных оптимумов — 11 из 40. Так же есть пример, в котором решатель
Gurobi не смог найти допустимого решения за отведённое время работы.
Критерий 2 на этих примерах наиболее предпочтителен.

Результаты в табл. 4 получены на входных данных малой размерно-
сти. Решатель Gurobi нашёл 29 оптимальных решений на 50 примерах.
Алгоритм VND2 находит решение в среднем немного хуже, чем реша-
тель, но время работы в тысячи раз меньше.
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На рис. 1 отображены средние показатели алгоритмов с разными па-
раметрами. По горизонтали отмечен алгоритм VND(k,flip) с парамет-
рами k и flip. Запись VND(k,flip)(x) означает, что использована идея
мультистарта и этот алгоритм запускался x раз. Приведены значение
gap и время работы алгоритмов, масштабированные по максимальному
значению, а максимальное указано в легенде. Из рис. 1 видно, что идея
мультистарта позволяет найти решение лучше, при этом время работы
увеличивается пропорционально количеству запусков.

Если ограничиться примерами, для которых найден оптимум, то для
алгоритма VND наилучшими параметрами будут k = 2 и flip = 2. При
увеличении одного из параметров время счёта сильно возрастает, а зна-
чение целевой функции улучшается незначительно.

Таблица 4

Результаты численного эксперимента на малой размерности

Пример Gurobi VND1 VND2 VND′

2

№ n m r V % gap Время gap Время gap Время gap Время

1 30 30 5

177 10 4,0−4 4,3+4 1,9−3 6,4+0 3,8−5 1,5+0 4,9−2 8,5+1

531 30 2,1−3 4,3+4 1,5−1 9,2+0 1,4−1 5,0+0 1,7−2 1,4+2

885 50 5,5−3 4,3+4 8,1−2 1,5+1 7,8−2 5,1+0 8,3−2 3,9+1

1239 70 1,1−2 4,3+4 3,0−2 9,3+0 1,1−2 6,7+0 −1,9−4 3,9+1

1593 90 3,0−2 4,3+4 2,8−2 1,2+1 5,6−2 6,2+0 5,1−3 3,6+1

2 35 35 5

167 10 0 1,6+2 2,2−3 1,8+0 2,2−3 5,8−1 6,8−3 7,6+1

503 30 2,5−3 4,3+4 2,8−2 2,4+1 2,0−2 3,6+0 9,3−2 2,3+2

839 50 7,8−3 4,3+4 5,5−3 4,0+1 −3,4−3 9,4+0 8,6−3 1,6+2

1175 70 1,2−2 4,3+4 7,4−3 1,9+1 −2,4−2 2,0+1 −2,3−2 7,3+1

1511 90 2,2−2 4,3+4 −8,6−3 1,6+1 −8,6−3 1,5+1 −8,6−3 6,6+1

3 35 35 5

170 10 0 1,3+2 2,3−3 1,8+0 1,3−8 7,5−1 2,3−2 9,6+1

512 30 2,3−3 4,3+4 9,8−3 2,0+1 1,0−2 4,9+0 9,3−2 1,4+2

854 50 9,3−3 4,3+4 −4,2−2 5,6+1 −3,4−2 8,4+0 −3,3−2 1,2+2

1196 70 1,3−2 4,3+4 3,1−2 4,3+1 −1,8−3 1,0+1 2,5−2 6,2+1

1538 90 2,1−2 4,3+4 5,4−2 4,5+1 6,4−2 1,8+1 −3,4−2 6,4+1

4 35 35 5

169 10 0 1,0+2 1,1−3 3,2+0 2,3−3 9,5−1 1,3−2 2,5+2

507 30 3,2−3 4,3+4 3,6−2 3,6+1 3,7−2 6,0+0 1,7−1 1,3+2

845 50 8,2−3 4,3+4 −3,4−2 3,1+1 −4,0−2 9,1+0 4,3−3 7,0+1

1183 70 1,2−2 4,3+4 6,2−4 3,6+1 6,2−4 2,4+1 2,4−2 6,1+1

1521 90 2,7−2 4,3+4 7,6−2 3,0+1 −7,6−2 1,8+1 9,0−2 5,6+1

5 35 35 5

174 10 0 1,2+2 3,4−3 4,5+0 2,3−3 7,2−1 1,4−2 1,3+2

524 30 2,7−3 4,3+4 1,7−2 2,2+1 5,9−3 3,2+0 5,8−2 2,3+2

874 50 7,2−3 4,3+4 −1,6−3 2,0+1 −4,2−3 1,5+1 1,9−2 6,4+1

1224 70 1,2−2 4,3+4 −1,9−3 2,8+1 −1,9−3 1,4+1 2,3−2 5,6+1

1574 90 3,4−2 4,3+4 −6,8−2 2,1+1 −6,8−2 1,3+1 −6,8−2 5,9+1
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Таблица 4 (окончание)

Пример Gurobi VND1 VND2 VND′

2

№ n m r V % gap Время gap Время gap Время gap Время

6 20 20 5

108 10 0 9,6+0 7,2−3 1,7−1 1,2−3 5,5−2 5,0−2 7,6+0

324 30 0 1,2+2 2,0−2 1,4+0 3,0−2 2,7−1 4,1−2 9,4+0

541 50 0 1,1+2 3,3−2 7,2−1 1,6−2 5,8−1 3,0−2 5,1+0

757 70 0 1,2+2 3,9−3 1,9+0 4,1−3 1,2+0 5,5−2 3,4+0

973 90 0 1,4+2 1,6−2 2,6+0 1,2−2 7,0−1 1,5−3 4,6+0

7 25 25 5

151 10 0 1,5+2 7,6−3 1,5+0 3,9−3 2,5−1 7,0−2 3,1+1

454 30 0 4,3+3 5,5−3 6,9+0 1,1−2 1,2+0 1,1−2 2,6+1

757 50 0 4,8+3 1,5−2 8,1+0 5,6−3 2,2+0 5,6−3 1,6+1

1060 70 0 4,5+3 2,2−2 1,1+1 2,2−2 3,6+0 2,2−2 2,7+1

1363 90 0 1,7+3 3,4−2 1,1+1 2,9−1 2,4+0 2,3−2 1,4+1

8 20 20 5

126 10 0 1,3+1 2,3−3 9,5−2 2,3−3 1,2−1 1,8−2 1,2+1

378 30 0 1,4+2 0 8,6−1 2,2−2 3,1−1 3,7−2 4,5+0

631 50 0 1,8+2 1,2−2 1,5+0 1,1−2 5,7−1 1,1−2 4,5+0

884 70 0 1,4+2 2,8−2 2,9+0 1,8−2 6,4−1 1,6−2 7,2+0

1136 90 0 1,9+2 6,4−2 4,6+0 3,2−2 7,7−1 3,2−2 4,8+0

9 15 15 5

98 10 0 2,0+1 7,4−4 7,3−2 5,8−3 4,3−2 1,4−2 2,7+0

294 30 0 3,6+1 1,4−3 2,2−1 2,8−9 2,4−1 2,8−9 1,4+0

491 50 0 3,1+1 2,0−3 2,9−1 2,4−9 2,9−1 2,4−2 8,0−1

688 70 0 4,1+1 3,3−3 2,6−1 8,8−9 3,0−1 8,8−9 1,2+0

884 90 0 4,1+1 5,5−9 8,7−1 5,5−9 2,9−1 5,5−9 1,4+0

10 15 15 10

87 10 0 8,8+0 7,0−2 3,2−1 8,1−2 1,3−1 1,2−1 1,2+1

263 30 0 7,7+1 6,7−2 1,2+0 1,0−2 5,0−1 2,3−2 7,1+0

438 50 0 5,8+1 6,0−2 8,8−1 4,9−2 6,7−1 3,8−2 1,2+0

613 70 0 3,8+1 3,7−2 5,9−1 1,5−2 2,9−1 1,8−2 7,8−1

789 90 0 6,6+1 2,2−2 1,1+0 4,8−9 3,2−1 4,8−9 3,1+0

Из рис. 2 видно, что наименьший gap, отмеченный по вертикали, име-
ет реализация алгоритма с параметрами k = 2, flip = 2 при запуске
10 раз. Алгоритм с параметрами k = 2, flip = 3 и запуском 10 раз спра-
вился в среднем хуже: так происходит из-за того, что стартовое реше-
ние выбирается случайным образом. Эксперименты показывают, что для
идеи мультистарта наилучшее число запусков алгоритма равно 10.

Заключение

Исследование пороговой устойчивости двух- и трёхуровневых задач
размещения и ценообразования начато в работах [1, 2]. На их основе
рассмотрена пороговая устойчивость двухуровневых задач размещения
и ценообразования с медианным типом размещения предприятий [3, 4].
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Рис. 1. Средние значения gap и времени по всем примерам

В указанных работах развит оригинальный подход к разработке алго-
ритмов решения соответствующих задач, основанный на использовании
методов решения исходной задачи и её подзадач. Численный экспери-
мент показал весьма высокую эффективность разработанных алгорит-
мов как по качеству приближённых решений, так и по трудоёмкости
алгоритмов [3, 4]. Однако базовые задачи, для которых исследована по-
роговая устойчивость, объединяет общее свойство — при фиксированном
размещении предприятий соответствующие задачи ценообразования по-
линомиально разрешимы. Стало быть, для объективной оценки подхо-
да, развитого в указанных работах, желательно исследовать пороговую
устойчивость, например, задачи размещения и фабричного ценообразо-
вания, поскольку при фиксированном размещении предприятий задача
фабричного ценообразования NP-трудна в сильном смысле.

В настоящей работе показано, что развитый в [3, 4] подход к разработ-
ке эффективных приближённых алгоритмов для определения пороговой
устойчивости двухуровневой задачи размещения производства и ценооб-
разования оказывается продуктивным и в случае базовой задачи с фаб-
ричным ценообразованием. Для решения задачи пороговой устойчивости
предлагается алгоритм, основанный на спуске с чередующимися окрест-
ностями (VND).
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Рис. 2. Среднее значение gap для примеров с известным оптимумом

Численное исследование алгоритма проводится на известных приме-
рах и случайно сгенерированных данных. Эксперименты показывают,
что итеративное вычитание радиуса пороговой устойчивости из бюдже-
тов потребителей значительно снижает время работы алгоритма. На при-
мерах с найденным оптимумом алгоритм ошибается в среднем на 0,63%
относительно оптимального значения целевой функции. На всех приме-
рах алгоритм находит решение со значением целевой функции в среднем
на 2,97% лучше в сравнении с решением Gurobi.

Теоремы 1 и 2 приводят также к следующей гипотезе: задачи порого-
вой устойчивости, исследованные в этой работе, полны в классе NPO от-
носительно подходящей сводимости, сохраняющей аппроксимируемость.

Вторая гипотеза вытекает из следствия 1, анализа доказательств тео-
рем 1, 2 и представленных алгоритмов решения. Точный детерминиро-
ванный полиномиальный алгоритм с оракулом из класса NP, о кото-
ром говорится в следствии 1, легко получить, взяв в качестве оракула
стандартную задачу распознавания. В силу этого высокая эффектив-
ность разработанных алгоритмов связана, возможно, с тем, что исполь-
зованный в работе подход позволяет хорошо аппроксимировать оракул,
доставляющий информацию для детерминированного полиномиального
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точного алгоритма из класса ∆P
2 . С учётом того, что оракул представля-

ет собой NP-полную задачу, в алгоритме используется итеративная про-
цедура поиска (ρ, y, p) в обход фазы недетерминированного угадывания
этих величин, которые и образуют сертификат.
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Abstract. We study the threshold stability of the problem with the
median location of facilities and mill pricing. The problem of threshold
stability has the following differences from the original two-level for-
mulation: in the top-level problem, the deviation of consumer budgets
from expected values is maximized provided that the producer’s income
is not less than a given threshold. The problem statement considered
in this paper differs from those previously studied in that the pricing
problem is NP-hard in the strong sense when the location of facilities is
fixed.

A variable neighborhoods descent based algorithm (VND) to solve
the threshold stability problem is proposed. Numerical investigation of
the algorithm is carried out on known examples and randomly generated
data. The experiment shows that iteratively subtracting the threshold
stability radius from the consumer budgets, which is first implemented
in this paper, strongly reduces the running time of the algorithm. On the
examples with the optimum known, the algorithm was wrong on average
by 0.63%. In all the examples, the algorithm finds a solution on average
2.97% better than the Gurobi solver. Tab. 4, illustr. 2, bibliogr. 33.

Keywords: bilevel problem, threshold stability, radius of threshold sta-
bility, facility location, mill pricing, variable neighborhood descent.
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Аннотация. Рассматривается задача синтеза фазированной антен-
ной решётки, которая заключается в выборе фаз и амплитуд для
всех излучающих элементов, когда требуется, чтобы получаемая
диаграмма направленности по каждому рассматриваемому направ-
лению принадлежала заданному множеству. Установлено, что поиск
допустимого решения является NP-трудной в сильном смысле зада-
чей в случае, когда по каждому рассматриваемому направлению
допускается одно или два значения мощности излучения. Кроме то-
го, доказана NP-трудность поиска допустимого решения в задаче
синтеза частично заполненной антенной решётки, когда требуется,
чтобы получаемая диаграмма направленности по каждому рассмат-
риваемому направлению принадлежала заданному интервалу и ам-
плитуды всех излучателей были одинаковы. Библиогр. 19.

Ключевые слова: вычислительная сложность, антенная решётка,
сводимость, NP-полнота.

Введение

Фазированная антенная решётка (ФАР) представляет собой совокуп-
ность излучателей, подключённых к устройствам, обеспечивающим тре-
буемое распределение фаз и амплитуд на этих излучателях. ФАР широко
используются в диапазоне сверхвысоких частот для получения излуче-
ния с заданной диаграммой направленности (см., например, [1]). В диа-
пазоне высоких частот, который соответствует коротким волнам, такие
системы позволяют получить увеличение энергии канала связи или со-
кращение занимаемого пространства [2, 3].

Задача синтеза ФАР заключается в выборе фаз и амплитуд для всех
излучающих элементов, когда требуется, чтобы получаемая диаграмма

© А. В. Еремеев, 2025
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направленности по каждому из рассматриваемых направлений принад-
лежала заданному множеству. В некоторых формулировках задачу син-
теза ФАР удаётся решить с использованием методов выпуклого програм-
мирования [4, 5] или методов линейной алгебры [6, 7]. В частности, в [8]
показано, что задачей выпуклого программирования является отыска-
ние возбуждений заданного набора произвольно расположенных источ-
ников таким образом, чтобы создать интенсивность дальнего поля, кото-
рая максимальна в заданном направлении и подчиняется произвольным
верхним границам в других направлениях. Однако, многие авторы вы-
нуждены использовать более трудоёмкие методы, разработанные для ре-
шения многоэкстремальных задач, такие как мультистарт градиентной
оптимизации [9, 10], метаэвристики [11, 12], методы, основанные на по-
луопределённой релаксации [13] и т. д.

В настоящей работе для двух вариантов задачи синтеза ФАР дока-
зывается NP-трудность в сильном смысле. Первый вариант соответству-
ет постановке из [13], но имеет специфические требования к диаграмме
направленности. Второй вариант предполагает синтез фаз в излучате-
лях частично заполненной решётки с более реалистичными требовани-
ями относительно диаграммы направленности. NP-трудность вытекает
из полученных в теоремах 1 и 2 свойств NP-полноты соответствующих
задач распознавания, сформулированных в разд. 1 и 2.

1. Задача синтеза фазированной антенной решётки

Рассмотрим ФАР, состоящую изN излучающих элементов, размещён-
ных в точках r1, . . . , rN ∈ R3. Для упрощения обозначений задача описа-
на в случае, когда диаграмма направленности параметризована только
значениями полярного угла θ в фиксированной азимутальной плоскости,
которая опущена в обозначениях. Обобщение на случай, когда диаграм-
ма направленности задаётся как по азимутальному, так и по полярному
угловому направлению, существенно не усложнит задачу.

Пусть каждый элемент k создаёт парциальное поле gk(θ) в направле-
нии θ, т. е. gk(θ)— напряжённость электромагнитного поля, создаваемого
в направлении θ на большом расстоянии (т. е. когда размеры ФАР пре-
небрежимо малы по сравнению с расстоянием до приёмника) при проте-
кании единичного тока через излучающий элемент k. Тогда на большом
расстоянии напряжённость поля f(θ), излучаемого всей ФАР в направ-
лении θ, имеет вид (см., например, [13] или подробнее в [14, § 1.13])

f(θ) = a(θ)Hw, (1)

a(θ) = (g1(θ)e
2πj〈r1,r(θ)〉/λ, . . . , gN (θ)e2πj〈rN ,r(θ)〉/λ), (2)
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где λ— длина волны, j — мнимая единица, 〈·, ·〉— скалярное произведе-
ние, w — комплексный вектор возбуждения, определяющий как ампли-
туду тока |wk|, так и его фазу Argwk в каждом излучателе k. Наконец,
r(θ)— единичный вектор в направлении θ, а верхний индекс H обозначает
эрмитову транспозицию вектора. Введём обозначения

ai = a(θi), fi = f(θi) = aHi w, x = (Rew, Imw)⊤ ∈ R2N×1,

Ai =

Ç
Re a⊤i − Im a⊤i

Im a⊤i Rea⊤
i

å
=

(
a
(11)
i . . . a

(1,2N)
i

a
(21)
i . . . a

(2,2N)
i

)
∈ R2×2N .

Вещественнозначная версия (1), (2) для напряжённости поля в направ-
лении θi тогда примет вид (подробнее см., например, [9, п. 2.1])

(Re fi, Im fi)
⊤ = Aix. (3)

Мощность, излучаемая ФАР в направлении θi, равна

|fi|2 = x⊤Qix, Qi = A⊤
i Ai. (4)

Задача синтеза ФАР (см., например, [13]) сводится к поиску вектора воз-
буждений x такого, что для всех направлений i = 1, . . . , I мощность |fi|2,
излучаемая решёткой в направлении i, принадлежит заданному подмно-
жеству Ci ⊂ R.

Эта задача полагалась NP-трудной в [13] без строгого доказательства.
Очевидно, что она не проще, чем следующая задача распознавания, кото-
рую назовём распознавательным вариантом дискретной задачи синтеза
ФАР.

Задача 1 (дискретная задача синтеза ФАР). Дано I ∈ N целочис-

ленных (2 × 2N)-матриц Ai, i = 1, . . . , I, и 2I целочисленных значений

αi 6 βi, i = 1, . . . , I. Существует ли вектор x ∈ R2N такой, что

x⊤A⊤
i Aix ∈ {αi, βi}, i = 1, . . . , I? (5)

Теорема 1. Распознавательный вариант дискретной задачи синтеза

ФАР является NP-полной в сильном смысле задачей.

Перед доказательством теоремы получим следующую техническую
лемму, которая предполагает определённую координацию (синхрониза-
цию) возбуждений в элементах k = 1, . . . , N − 1 с элементом N.

Лемма 1. Если N > 3 и система ограничений содержит условия

x⊤Qkx = x2k + x2N+k ∈ {0, 1}, k < N, (6)

x⊤QNx = x2N + x22N = 1, (7)

x⊤QN+kx = 4x2k + 4x2N+k + x2N + x22N +

+ 4xkxN + 4xN+kx2N = 1, k < N, (8)
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то для любых k, ℓ < N перекрёстные произведения удовлетворяют ра-

венству

xkxℓ + xN+kxN+ℓ =

®
1, если x2k + x2N+k = x2ℓ + x2N+ℓ = 1,

0 в противном случае.
(9)

Доказательство. Очевидно, что если имеет место x2k + x2N+k = 0

или x2ℓ + x2N+ℓ = 0, то немедленно получаем xkxℓ + xN+kxN+ℓ = 0, что
удовлетворяет (9).

Рассмотрим случай x2k + x2N+k = x2ℓ + x2N+ℓ = 1. Тогда условие (8)
означает, что

xkxN + xN+kx2N = −1. (10)

Легко видеть, что при условии x2k+x
2
N+k = x2N +x22N = 1 минимум выра-

жения xkxN +xN+kx2N равен −1, и он достигается тогда и только тогда,
когда xk = −xN , xN+k = −x2N . Как раз этого и требует условие (10)
для всех k < N, поэтому в рассматриваемом случае xkxℓ + xN+kxN+ℓ =
x2N + x22N = 1, где последнее равенство следует из условия (7). Лемма 1
доказана.

Как видно из леммы 1, ограничения (8) обеспечивают согласование
фаз во всех излучающих элементах k < N с фазой в элементе N, которая
может быть произвольной.

Доказательство теоремы 1. Прежде всего отметим, что распо-
знавательный вариант дискретной задачи синтеза ФАР принадлежит
классу NP. Далее к рассматриваемой задаче распознавания сведём NP-
полную в сильном смысле задачу Независимое множество (см., на-
пример, [15]).

Задача 2 (Независимое множество). Даны граф G = (V,E) и це-

лое число K > 0. Содержит ли граф G подмножество попарно несмеж-

ных вершин S мощности K (т. е. независимое множество S, |S| = K)?

Пусть n = |V |, m = |E|, V = {v1, . . . , vn}, а ребро с номером r =
1, . . . ,m имеет вид er = vk(r)vℓ(r).

Для заданного графа G, т. е. примера задачи Независимое множе-

ство, построим пример распознавательной дискретной задачи синтеза
ФАР следующим образом. Пусть N = n+ 1 и все N векторов a1, . . . ,aN
вещественнозначны:

a1 = (1, 0, 0 . . . , 0)⊤, a2 = (0, 1, 0 . . . , 0)⊤, . . . , aN = (0, 0, . . . , 0, 1)⊤.

Тогда для любого k = 1, . . . , N все элементы матрицы Ak нулевые, за ис-
ключением a

(1,k)
k = a

(2,N+k)
k = 1.
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Подмножества Ck, k = 1, . . . , n, задаются двумя допустимыми значе-
ниями излучаемой мощности αk = 0, βk = 1. Тем самым Qk = A⊤

k Ak,

где все элементы равны нулю, за исключением q
(kk)
k = q

(N+k,N+k)
k = 1

при k = 1, . . . , n, т. е. первые n ограничений в системе (5) имеют вид

x2k + x2N+k ∈ {0, 1}, k = 1, . . . , n. (11)

Ограничения (11) задают альтернативу (0 или 1) для амплитуды воз-
буждения в излучающих элементах 1, . . . , n, что соответствует альтерна-
тиве в задаче Независимое множество: либо включить вершину vk
в набор S (когда x2k + x2N+k = 1), либо пропустить эту вершину (когда
x2k + x2N+k = 0).

Для последнего элемента ФАР фиксируем единичную амплитуду:

x2N + x22N = 1, (12)

поэтому CN = {1}. Этот элемент ФАР используем для координации фаз
во всех других излучающих элементах в том же смысле, в каком эле-
мент с номером N используется в лемме 1. С этой целью в каждом
векторе aN+k, k = 1, . . . , n, положим действительную часть k-го ком-
понента равной 2, а действительную часть компонента N положим рав-
ной 1. Остальные действительные и все мнимые части комплексного век-
тора aN+k полагаются равными 0. Тогда для любого k = 1, . . . , n все
элементы матрицы AN+k нулевые, за исключением a

(1k)
N+k = a

(2,N+k)
N+k = 2

и a(1N)
N+k = a

(2,N)
N+k = 1.

Подмножества CN+k, k = 1, . . . , n, состоят из одного элемента, рав-
ного 1: αk = 1, βk = 1 для k = N + 1, . . . , N + n. Тогда для любого
k = 1, . . . , n справедливо QN+k = A⊤

N+kAN+k, где все элементы рав-
ны нулю, за исключением четырёх элементов, соответствующих действи-
тельным частям: q(kk)N+k = 4, q

(N,N)
N+k = 1, q

(kN)
N+k = 2, q

(Nk)
N+k = 2, и четырёх

элементов, соответствующих мнимым частям:

q
(N+k,N+k)
N+k = 4, q

(2N,2N)
N+k = 1, q

(N+k,2N)
N+k = 2, q

(2N,N+k)
N+k = 2.

Следовательно, матрицы QN+k, k = 1, . . . , n, определяют ограничения

4x2k + 4x2N+k + x2N + x22N + 4xkxN + 4xN+kx2N = 1, (13)

где k = 1. . . . , n. Заметим, что ввиду леммы 1 ограничения (13) вместе
с (12) дают

xkxℓ + xN+kxN+ℓ ∈ {0, 1}, k = 1, . . . , n, ℓ = 1, . . . , n. (14)

Чтобы представить граф в терминах дискретной задачи синтеза ФАР,
для каждого ребра er, r = 1, . . . ,m, положим равными 1 действитель-
ные части двух компонент с индексами k(r) и ℓ(r) в векторе aN+n+r,
остальные действительные части Re aN+n+r полагаем равными нулю, как
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и все мнимые части, т. е. Im aN+n+r = (0, 0, . . . , 0)⊤. Тогда для любо-
го r = 1, . . . ,m матрица AN+n+r состоит из нулевых элементов, за ис-
ключением

a
(1,k(r))
N+n+r = a

(1,ℓ(r))
N+n+r = a

(2,N+k(r))
N+n+r = a

(2,N+ℓ(r))
N+n+r = 1.

Подмножества CN+n+r снова состоят из двух элементов, нуля и еди-
ницы: αi = 0, βi = 1 для i = N + n + 1, . . . , N + n + m. Тогда для
любого r = 1, . . . ,m имеем QN+n+r = A⊤

N+n+rAN+n+r, где все элемен-
ты равны нулю, за исключением четырёх элементов, соответствующих
действительным частям:

q
(k(r),k(r))
N+n+r = q

(ℓ(r),ℓ(r))
N+n+r = q

(k(r),ℓ(r))
N+n+r = q

(ℓ(r),k(r))
N+n+r = 1,

и четырёх элементов, соответствующих мнимым частям:

q
(N+k(r),N+k(r))
N+n+r = q

(N+ℓ(r),N+ℓ(r))
N+n+r = q

(N+k(r),N+ℓ(r))
N+n+r = q

(N+ℓ(r),N+k(r))
N+n+r = 1.

Следовательно, матрицы QN+n+r, r = 1, . . . ,m, определяют ограничения

x2k(r) + x2N+k(r) + x2ℓ(r) + x2N+ℓ(r) +

+ 2xk(r)xℓ(r) + 2xN+k(r)xN+ℓ(r) ∈ {0, 1}, r = 1, . . . ,m, (15)

которые вместе с (14) показывают, что должно выполняться хотя бы одно
из равенств x2k(r) + x2N+k(r) = 0, x2ℓ(r) + x2N+ℓ(r) = 0. Это соответствует
требованию, чтобы оба конца ребра er не принадлежали одновременно
множеству S.

Для подсчёта числа излучающих элементов с единичной амплитудой
возбуждения определим вектор aI , I = N + n+m+ 1, равенствами

ReaI = (1, 1, . . . , 1, 0)⊤, Im aI = (0, 0, . . . , 0, 0)⊤,

т. е.

AI =

Å
1, . . . , 1, 0 0, . . . , 0, 0
0, . . . , 0, 0 1, . . . , 1, 0

ã
,

и в QI = A⊤
I AI имеем q

(kℓ)
I = q

(N+k,N+ℓ)
I = 1 для всех k, ℓ = 1, . . . , n,

остальные элементы в QI равны нулю.
Пусть M =

{
k ∈ {1, . . . , n} | x2k + x2N+k = 1

}
. Тогда

x⊤QIx =
∑

k,ℓ∈M

(xkxℓ + xN+kxN+ℓ) = |M |2 (16)

в силу леммы 1 и определения множества M.
Наконец, положим αI = βI = K2, т. е. последнее ограничение в задаче

синтеза ФАР имеет вид
x⊤QIx = |K|2. (17)

С одной стороны, если этот экземпляр распознавательной задачи син-
теза ФАР имеет допустимое решение, то из (16) следует, что |M | = K,
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а множество вершин S = {vi | i ∈ M} является независимым в графе G
и имеет размер K. С другой стороны, если |S| = K в задаче Независи-

мое множество, то можно положить xk = 1 для всех k 6 n таких, что
vk ∈ S, и для k = n + 1, а остальные компоненты вектора x установить
равными нулю. Легко проверить, что все ограничения соответствующего
экземпляра распознавательной задачи синтеза ФАР выполнены.

Следовательно, индивидуальная задача Независимое множество

имеет положительный ответ тогда и только тогда, когда построенный
нами пример имеет положительный ответ, и это построение выполни-
мо за полиномиальное время. Таким образом, распознавательный вари-
ант дискретной задачи синтеза ФАР — NP-полная задача. Более того,
эта задача NP-полна в сильном смысле, поскольку числовые парамет-
ры построенного примера полиномиально ограничены от размера графа
в исходной задаче Независимое множество. Теорема 1 доказана.

2. Интервальная задача синтеза фаз

в частично заполненной антенной решётке

Как правило, излучатели ФАР располагаются некоторым регулярным
образом с фиксированным шагом, например, на линии, в узлах прямо-
угольной решётки, в вершинах правильного многоугольника и т. п. Одна-
ко в некоторых случаях могут использоваться и прореженные ФАР, в ко-
торых часть регулярных позиций не заполнена. Пусть r1, . . . , rN ∈ R3 да-
лее описывают расположение регулярных позиций. Прореженные ФАР,
таким образом, имеют менее N излучателей, что выгодно снижает стои-
мость и взаимное влияние между элементами, но также невыгодно повы-
шает излучаемую мощность в нежелательных направлениях (см., напри-
мер, [14, 16, § 1.17]). Прореженные ФАР, в которых все элементы имеют
одинаковую мощность возбуждения, могут быть основаны на случайном
расположении элементов (см., например, [17, 18, гл. 7]) или специально
выбранном подмножестве регулярных положений излучателей, напри-
мер, с использованием разностных множеств [16, 19].

Некоторое снижение излучаемой мощности в нежелаемых направле-
ниях может быть получено путём подачи неравных по амплитуде воз-
буждений на элементы антенны. Как отмечено в [16], недостаток этого
подхода заключается в том, что усиление ФАР будет меньше, чем у ре-
шётки, в которой полная мощность прикладывается ко всем элементам,
что также согласуется с результатами вычислительных экспериментов
в [9, § 3.2]. В связи с этим в этом разделе рассмотрим задачу синтеза
ФАР, где амплитуды возбуждения не подлежат оптимизации.

Задача заключается в выборе подмножества излучателей из задан-
ной ФАР, состоящей из N элементов, и в назначении фаз возбуждения
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выбранным элементам так, чтобы для всех направлений i = 1, . . . , I мощ-
ность, излучаемая решёткой в направлении i, принадлежала соответ-
ствующему интервальному подмножеству Ci = [Li, Ui] ⊂ R. Без потери
общности можно предположить, что амплитуда в каждом элементе рав-
на 1. Очевидно, что такая задача синтеза ФАР не будет проще следующей
задачи распознавания, которую назовём распознавательным вариантом
задачи синтеза частично заполненной ФАР.

Задача 3 (синтез частично заполненной ФАР). Даны I ∈ N целочис-

ленных (2 × 2N)-матриц Ai, i = 1, . . . , I, и 2I целочисленных значений

Li 6 Ui, i = 1, . . . , I. Существует ли вектор x ∈ R2N такой, что

x2k + x2N+k ∈ {0, 1}, k = 1, . . . , N, (18)

x⊤A⊤
i Aix ∈ [Li, Ui], i = 1, . . . , I? (19)

Условие (18) здесь подразумевает, что излучающий элемент создаётся
на позиции k тогда и только тогда, когда x2k + x2N+k ∈ {0, 1}.

Заметим, что в отличие от распознавательного варианта дискретной
задачи синтеза ФАР, сформулированная здесь задача требует, чтобы из-
лучаемая мощность в каждом направлении i = 1, . . . , I принадлежала
непрерывному интервалу [Li, Ui], а не дискретному множеству {αi, βi}.
В этом смысле распознавательный вариант задачи синтеза частично за-
полненной ФАР имеет более реалистичную постановку.

Теорема 2. Распознавательный вариант задачи синтеза частично за-

полненной ФАР является NP-полной в сильном смысле задачей.

Доказательство аналогично доказательству теоремы 1 с тем от-
личием, что здесь при построении сводимости не требуются ограниче-
ния (11), так как они следуют из условия (18), содержащегося в фор-
мулировке задачи. Аналоги всех прочих ограничений — (12), (13), (15)
и (17) — отличаются тем, что в правой части содержат интервалы [Li, Ui],
где Li = αi, Ui = βi. Теорема 2 доказана.

Заключение

С использованием эффективной сводимости известной NP-полной за-
дачи Независимое множество показано, что поиск допустимого воз-
буждения ФАР является NP-трудной в сильном смысле задачей в случае,
когда по каждому направлению допускается одно или два значения мощ-
ности излучения (теорема 1). Формально эта задача является частным
случаем рассмотренной в [13] задачи синтеза ФАР. Однако более реали-
стичной постановкой является другой частный случай, когда по каждо-
му направлению задан непрерывный интервал для мощности излучения
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(интервальная постановка). Частный случай этой задачи, когда допусти-
мые интервалы на излучаемую мощность представляют собой верхние
границы, эффективно разрешим [8]. Предполагается, что дальнейшие ис-
следования позволят уточнить границу, разделяющую труднорешаемые
варианты задачи синтеза ФАР от эффективно разрешимых случаев.

В работе также рассмотрена модификация интервальной постанов-
ки задачи, когда в каждой известной позиции можно установить или
не устанавливать излучающий элемент, амплитуды всех излучателей оди-
наковы, а фазы излучателей требуется найти. NP-трудность поиска до-
пустимого решения для этой задачи следует из теоремы 2.
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Abstract. We consider the problem of phased antenna array synthe-
sis, which consists of choosing phases and amplitudes for all radiating
elements when it is required that the resulting radiation pattern in each
direction considered belongs to a given set. It is established that the
search for an admissible solution is a strongly NP-hard problem in the
case when, for each direction considered, one or two radiation power
values are allowed. In addition, the NP-hardness of finding an admissi-
ble solution in the problem of synthesis of a thinned antenna array is
proven in the case when, for each direction considered, radiation power
belongs to a given interval and excitation amplitudes in all elements are
identical. Bibliogr. 19.
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Аннотация. Рассматриваются обобщённые централизаторы бинар-
ного отношения σ, представляющие собой полугруппы отношений
(многозначных отображений), сохраняющих отношение σ в опре-
делённом смысле. Определяется восемь неэквивалентных условий
того, что может значить термин «сохранять отношение». Рассмот-
рены все возможные комбинации этих условий, приводящие к раз-
личным полугруппам обобщённых централизаторов бинарного от-
ношения, в зависимости от мощности множества, на котором это
отношение задано. В частности, доказано восемь теорем, устанав-
ливающих связь между этими условиями: первые четыре теоремы
выполняются только для конечных множеств, а последние — для
произвольных. Также установлена полнота этого списка теорем для
множеств мощности не меньше 4. Для каждой мощности дан исчер-
пывающий ответ на вопрос о числе обобщённых централизаторов.
Табл. 2, библиогр. 5.

Ключевые слова: обобщённый централизатор, полугруппа бинар-
ных отношений.

Введение

Для непустого множества X определим следующие множества:
• S(X)— множество всех биективных отображений α : X → X;
• T (X)— множество всех отображений α : X → X;
• P (X)— множество всех частичных отображений α : X1 → X, где

X1 ⊆ X — произвольное подмножество;
• B(X)— множество всех многозначных отображений α : X → X, т. е.

бинарных отношений α ⊆ X ×X.
Элементы из S(X), T (X), P (X) можно также рассматривать как би-

нарные отношения, т. е. отождествлять отображение α с отношением
{(x, xα) ∈ X ×X | образ xα определён}.

© М. В. Лежнин, Д. А. Хвощевский, 2025
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На этих множествах можно ввести умножение следующим образом:

αβ = {(x, y) ∈ X ×X | ∃ z : (x, z) ∈ α, (z, y) ∈ β}.
Относительно этой бинарной операции вышеописанные множества обра-
зуют полугруппы, а S(X) — группу.

Замечание 1. Справедливы включения S(X) ⊆ T (X) ⊆ P (X) ⊆
B(X), и при |X| > 2 все включения строгие. Каждая предыдущая полу-
группа — подполугруппа следующей, а S(X)— подгруппа T (X).

Например, при X = {1, 2, 3, 4} имеем

α =

Å
1 2 3 4
3 3 1 4

ã
∈ T (X) \ S(X), β =

Å
1 2 3 4
− 3 3 1

ã
∈ P (X) \ T (X),

γ =

Å
1 2 3 4
{1, 3} − 2 {2, 3, 4}

ã
∈ B(X) \ P (X).

Замечание 2. Бинарные отношения можно понимать и в более ши-
роком смысле как α ⊆ A × B. Тогда можно будет умножать α ⊆ A × B
на β ⊆ B × C, получая αβ ⊆ A× C (см. [1]).

Для α ∈ B(X) определяется отношение

α−1 = {(y, x) ∈ X ×X | (x, y) ∈ α}.
Вообще, для α ⊆ X × Y аналогично определяется α−1 ⊆ Y ×X.

Пусть x, y ∈ X и α ∈ T (X). Определим действие полугруппы отобра-
жений на множестве X следующим образом:

xα = y ⇔ (x, y) ∈ α.
Что означает фраза «преобразование α сохраняет отношение σ»? Для

α ∈ P (X) можно определять сохранение σ разными неэквивалентными
способами, как описано в [2]. Бинарное отношение σ можно рассмат-
ривать как граф с множеством вершин X, тогда фраза «отображение
α : X → X сохраняет σ» может означать, что α является эндоморфиз-
мом графа. Различные подходы к понятию эндоморфизма графа описа-
ны в [3]. Сохранение n-арного отношения рассматривалось в [4].

В качестве определения понятия «отображение α : X → X сохраняет
отношение σ ∈ B(X)» возьмём следующее:

∀x, y ∈ X (x, y) ∈ σ → (xα, yα) ∈ σ.
Легко доказать, что это условие равносильно каждому из включений
σ ⊆ ασα−1, α−1σα ⊆ σ, σα ⊆ ασ, α−1σ ⊆ σα−1. При рассмотрении про-
извольного отношения вместо отображения α эти условия оказываются,
вообще говоря, неэквивалентными. Например, полугруппы отношений
с условиями σ ⊆ ασα−1 и α−1σα ⊆ σ, рассмотренные в [5], различны.
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Отметим также, что в случае, когда α представляет собой отношение,
а не отображение, α и α−1 равноправны. По этой причине кроме при-
ведённых выше четырёх включений имеет смысл рассматривать также
четыре двойственных к ним, которые получаются заменой α на α−1, по-
этому в настоящей работе рассматриваются следующие 8 соотношений:

(1) ασα−1 ⊆ σ, (2) σ ⊆ ασα−1,
(3) α−1σα ⊆ σ, (4) σ ⊆ α−1σα,
(5) σα ⊆ ασ, (6) ασ ⊆ σα,
(7) σα−1 ⊆ α−1σ, (8) α−1σ ⊆ σα−1.

Пусть I = {1, . . . , 8}— множество номеров рассматриваемых условий.
Каждой паре отношений (σ, α) поставим в соответствие набор K(σ, α) =
(k1, . . . , k8) ∈ {0, 1}8, в котором ki = 0, если соотношение (i) не выпол-
няется, и ki = 1, если соотношение (i) выполняется, где i ∈ I. Всего
есть 2|I| = 28 = 256 наборов, однако многие из них невозможны, так
как из некоторых соотношений можно вывести другие. Например, как
будет показано далее, (2)∧ (3)→ (5), а значит, все наборы вида ∗11∗0∗∗∗
невозможны. Далее для всех мощностей множества X будет определено,
какие наборы возможны, а какие невозможны.

Для σ ∈ B(X) и i ∈ I положим

Bi
σ(X) = {α ∈ B(X) | α удовлетворяет условию (i)}.

Нетрудно проверить, что множество Bi
σ(X)— подполугруппа полугруп-

пы B(X). Следовательно, если {i1, i2, . . . , ik} ⊆ I, то множество

Bi1,i2,...,ik
σ (X) = Bi1

σ (X) ∩Bi2
σ (X) ∩ · · · ∩Bik

σ (X)

также представляет собой подполугруппу полугруппы B(X). Полугруп-
пу Bi1,i2,...,ik

σ (X) можно условно считать полугруппой отображений (воз-
можно, многозначных), сохраняющих σ.Наряду с Bi

σ(X) можно рассмат-
ривать полугруппы P i

σ(X) = P (X) ∩ Bi
σ(X) и T i

σ(X) = T (X) ∩ Bi
σ(X),

а также их пересечения.
Множество Bi1,i2,...,ik

σ (X) будем называть обобщённым централизато-

ром бинарного отношения σ ∈ B(X), а функцию Bi1,i2,...,ik
• (X) : σ 7→

Bi1,i2,...,ik
σ (X) — обобщённым централизатором. Сразу видно, что для лю-

бого множества X имеется не больше чем 2|I| = 28 = 256 обобщённых
централизаторов. Оказывается, что их всегда будет значительно меньше
чем 256, так как из некоторых соотношений можно вывести другие, а зна-
чит, многие обобщённые централизаторы будут совпадать друг с другом.
Например, как будет показано далее, (2) ∧ (3) → (5), а значит, B2,3

• (X)

и B2,3,5
• (X) совпадают. Цель этой работы — для всех мощностей X опре-

делить, какие обобщённые централизаторы совпадают, а какие нет.
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Утверждение 1. Для произвольного множества X возможных на-

боров не больше, чем обобщённых централизаторов.

Доказательство. Пусть P = (p1, . . . , p8) и Q = (q1, . . . , q8)— про-
извольные наборы. Введём отношение частичного порядка на наборах
следующим образом:

P 4 Q⇔ ∀ i ∈ I pi 6 qi.

Будем называть набор P = (p1, . . . , p8) допустимым для обобщённого
централизатора BS

• (X) в том и только том случае, когда выполняется
импликация i ∈ S → pi = 1. Например, для обобщённого централизатора
B1,4,5

• (X) допустимыми будут наборы вида 1∗∗11∗∗∗ и только они.
Произвольному возможному набору P = (p1, . . . , p8) поставим в со-

ответствие обобщённый централизатор f(P ) = BS
• (X) для множества

S = {i ∈ I | pi = 1}. Покажем, что отображение f из множества воз-
можных наборов в множество обобщённых централизаторов инъектив-
но. Пусть f(P ) = f(Q), покажем, что P = Q. Рассмотрим множество
{K(σ, α) | α ∈ f(P )(σ)} возможных допустимых наборов для обобщённо-
го централизатора f(P ). У него есть наименьший относительно поряд-
ка 4 элемент P. Аналогично у множества {K(σ, α) | α ∈ f(Q)(σ)} есть
наименьший элементQ. Так как f(P ) = f(Q), эти множества равны, а по-
скольку у любого частично упорядоченного множества не больше одного
наименьшего элемента, получаем P = Q. Следовательно, отображение f
инъективное, т. е. возможных наборов не больше, чем обобщённых цен-
трализаторов. Утверждение 1 доказано.

Замечание 3. Отметим, что число возможных наборов и число обоб-
щённых централизаторов не всегда совпадают, так как существуют обоб-
щённые централизаторы, для которых множество возможных наборов
не имеет наименьшего элемента. Например, для множеств мощности 2
выполняется (4) → (1) ∨ (2), при этом (4) 9 (1) и (4) 9 (2), а значит,
у B4

•(X) нет наименьшего возможного набора. Здесь и далее при записи
утверждений вывода будем подразумевать, что импликация имеет наи-
меньший приоритет перед операциями в левой и правой частях.

Утверждение 2. Пусть |X| 6 |Y | для множеств X и Y.
1. Если набор возможен для X, то он возможен для Y. В частности,

число возможных наборов для X не больше, чем для Y.
2. Если два обобщённых централизатора различны для X, то они раз-

личны для Y. В частности, число обобщённых централизаторов для X
не больше, чем для Y.

Доказательство. Так как |X| 6 |Y |, существует инъективное отоб-
ражение f : X → Y.
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1. Если набор P возможен на множестве X, то существует пара (σ, α)
отношений на множестве X таких, что K(σ, α) = P. Тогда имеем следу-
ющую пару (σ̃, α̃) отношений на множестве Y таких, что K(σ̃, α̃) = P :

σ̃ = {(f(a), f(b)) | (a, b) ∈ σ}, α̃ = {(f(a), f(b)) | (a, b) ∈ α}.
2. Если BS

• (X) и BT
• (X) различны на множестве X, то существует па-

ра (σ, α) отношений на множестве X таких, что α ∈ BS
σ (X) и α /∈ BT

σ (X),
или таких, что α /∈ BS

σ (X) и α ∈ BT
σ (X). Без ограничения общности будем

считать, что выполняется первый случай, т. е. α ∈ BS
σ (X) и α /∈ BT

σ (X).
Тогда имеем следующую пару (σ̃, α̃) отношений на множестве Y таких,
что α̃ ∈ BS

σ̃ (X) и α̃ /∈ BT
σ̃ (X):

σ̃ = {(f(a), f(b)) | (a, b) ∈ σ}, α̃ = {(f(a), f(b)) | (a, b) ∈ α}.
Утверждение 2 доказано.

1. Результаты для конечных множеств

С помощью полного компьютерного перебора пар (σ, α) бинарных от-
ношений на множестве X мощности |X| 6 4 найдены все возможные
наборы и все обобщённые централизаторы, их количества приведены
в табл. 1. Так как для некоторых мощностей их достаточно много, вместо
возможных наборов и обобщённых централизаторов для каждой мощно-
сти приведём системы утверждений, по которым их можно восстановить.

Все представленные ниже системы утверждений обладают тремя по-
лезными свойствами:

1) корректность, т. е. для каждого возможного набора выполняются
все утверждения системы;

2) полнота, т. е. каждый набор, для которого выполняются все утвер-
ждения системы, возможный;

3) независимость, т. е. если исключить какое-нибудь утверждение
из системы, то появятся новые наборы, для которых выполняются все
утверждения системы.

Таблица 1

Результаты компьютерного перебора

|X|
Число возможных

наборов
Число обобщённых
централизаторов

0 1 1
1 2 2
2 38 127
3 143 151
4 151 151
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Система утверждений для |X| = 0:

(1), (2), (3), (4), (5), (6), (7), (8).

Система утверждений для |X| = 1:

(1), (2)→ (4), (3), (4)→ (2), (5), (6), (7), (8).

Система утверждений для |X| = 2:

(3) ∧ (4) ∧ (6) ∧ (7)→ (1), (3) ∧ (6) ∧ (7) ∧ (8)→ (5),

(3) ∧ (4) ∧ (5) ∧ (8)→ (2), (1) ∧ (5) ∧ (7) ∧ (8)→ (6),

(1) ∧ (2) ∧ (5) ∧ (8)→ (3), (1) ∧ (5) ∧ (6) ∧ (8)→ (7),

(1) ∧ (2) ∧ (6) ∧ (7)→ (4), (3) ∧ (5) ∧ (6) ∧ (7)→ (8),

(2) ∧ (3)→ (5), (6) ∧ (7)→ (1) ∨ (5), (6)→ (1) ∨ (5) ∨ (8),

(1) ∧ (4)→ (6), (6) ∧ (7)→ (1) ∨ (8), (7)→ (1) ∨ (5) ∨ (8),

(1) ∧ (4)→ (7), (5) ∧ (8)→ (3) ∨ (6), (5)→ (3) ∨ (6) ∨ (7),

(2) ∧ (3)→ (8), (5) ∧ (8)→ (3) ∨ (7), (8)→ (3) ∨ (6) ∨ (7),

(1) ∧ (5)→ (2) ∨ (6) ∨ (7), (1) ∧ (8)→ (2) ∨ (6) ∨ (7),

(3) ∧ (6)→ (4) ∨ (5) ∨ (8), (3) ∧ (7)→ (4) ∨ (5) ∨ (8),

(4)→ (1) ∨ (2), (6)→ (1) ∨ (2), (7)→ (1) ∨ (2),

(2)→ (3) ∨ (4), (5)→ (3) ∨ (4), (8)→ (3) ∨ (4).

Система утверждений для |X| = 3:

(1) ∧ (2) ∧ (7)→ (5) ∨ (6), (3) ∧ (4) ∧ (8)→ (5) ∨ (6),

(1) ∧ (2) ∧ (6)→ (7) ∨ (8), (3) ∧ (4) ∧ (5)→ (7) ∨ (8),

(3) ∧ (4) ∧ (6) ∧ (7)→ (1), (2) ∧ (3)→ (5),

(3) ∧ (4) ∧ (5) ∧ (8)→ (2), (1) ∧ (4)→ (6),

(1) ∧ (2) ∧ (5) ∧ (8)→ (3), (1) ∧ (4)→ (7),

(1) ∧ (2) ∧ (6) ∧ (7)→ (4), (2) ∧ (3)→ (8).

Система утверждений для |X| = 4:

(3) ∧ (4) ∧ (6) ∧ (7)→ (1), (2) ∧ (3)→ (5),

(3) ∧ (4) ∧ (5) ∧ (8)→ (2), (1) ∧ (4)→ (6),

(1) ∧ (2) ∧ (5) ∧ (8)→ (3), (1) ∧ (4)→ (7),

(1) ∧ (2) ∧ (6) ∧ (7)→ (4), (2) ∧ (3)→ (8).

Отметим, что корректность, полнота и независимость приведённых
выше систем несложно проверяются с помощью компьютера.



90 М. В. Лежнин, Д. А. Хвощевский

Оказывается, что для конечного множества X мощности |X| > 4 си-
стема утверждений будет выглядеть так же, как и для множества мощно-
сти 4, что докажем далее. Независимость системы несложно проверяет-
ся с помощью компьютера. Полнота системы следует из её полноты для
|X| = 4 и утверждения 2. Корректность системы показывают следующие
восемь теорем.

Теорема 1. Пусть σ и α— отношения на конечном множестве X и вы-

полняются соотношения

(3) α−1σα ⊆ σ, (4) σ ⊆ α−1σα, (6) ασ ⊆ σα, (7) σα−1 ⊆ α−1σ.

Тогда выполняется соотношение (1) ασα−1 ⊆ σ.
Доказательство. Поскольку множество X конечно, степени α нач-

нут периодически повторяться начиная с некоторого числа:

∃n ∈ Z>0 ∃ t ∈ Z>0 : α
n+t+1 = αn.

Здесь n > 0— целое, с которого начинаются повторения, а t + 1 > 1—
период. В этом случае из цепочки соотношений

ασα−1
(7)

⊆ αα−1σ
(4)

⊆ α(α−1)n+t+1σαn+t = α(α−1)nσαn+t
(3)

⊆
(3)

⊆ ασαt
(6)

⊆ σαt+1
(4)

⊆ (α−1)nσαn+t+1 = (α−1)nσαn
(3)

⊆ σ

получаем (1) ασα−1 ⊆ σ. Теорема 1 доказана.

Теорема 2. Пусть σ и α— отношения на конечном множестве X и вы-

полняются соотношения

(3) α−1σα ⊆ σ, (4) σ ⊆ α−1σα, (5) σα ⊆ ασ, (8) α−1σ ⊆ σα−1.

Тогда выполняется соотношение (2) σ ⊆ ασα−1.

Доказательство. Используя конечность множества X, делаем вы-
вод, что начиная с какого-то номера, степени α начнут периодически
повторяться:

∃n ∈ Z>0 ∃ t ∈ Z>0 : α
n+t+1 = αn.

Здесь n— номер, с которого начинаются повторения, а t+1— период, ко-
торый обязательно не меньше 1. В этом случае из цепочки соотношений

σ
(4)

⊆ (α−1)n+t+1σαn+t+1 = (α−1)nσαn+t+1
(3)

⊆ σαt+1
(5)

⊆ ασαt
(4)

⊆
(4)

⊆ α(α−1)n+1σαn+t+1 = α(α−1)n+1σαn
(3)

⊆ αα−1σ
(8)

⊆ ασα−1

получаем (2) σ ⊆ ασα−1. Теорема 2 доказана.
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Теорема 3. Пусть σ и α— отношения на конечном множестве X и вы-

полняются соотношения

(1) ασα−1 ⊆ σ, (2) σ ⊆ ασα−1, (5) σα ⊆ ασ, (8) α−1σ ⊆ σα−1.

Тогда выполняется соотношение (3) α−1σα ⊆ σ.
Доказательство. С помощью замены α на α−1 можно увидеть, что

эта теорема равносильна теореме 1. Теорема 3 доказана.

Теорема 4. Пусть σ и α— отношения на конечном множестве X и вы-

полняются соотношения

(1) ασα−1 ⊆ σ, (2) σ ⊆ ασα−1, (6) ασ ⊆ σα, (7) σα−1 ⊆ α−1σ.

Тогда выполняется соотношение (4) σ ⊆ α−1σα.

Доказательство. С помощью замены α на α−1 можно увидеть, что
эта теорема равносильна теореме 2. Теорема 4 доказана.

Оставшиеся четыре теоремы сформулируем и докажем в обобщённом
виде. Вместо одного множества X рассмотрим два множества X и Y,
а вместо одного отношения σ— два отношения ρ и σ. При этом в част-
ном случае, когда X = Y и ρ = σ, получим интересующие нас утвержде-
ния. Отметим, что первые четыре теоремы не допускают аналогичного
обобщения, что несложно проверить с помощью компьютера. Также для
четырёх теорем ниже не будем требовать конечности множеств X и Y.

Теорема 5. Пусть ρ ∈ B(X), σ ∈ B(Y ), α— отношение между множе-

ствами X и Y, т. е. α ⊆ X × Y, и выполняются обобщённые соотношения

(2) ρ ⊆ ασα−1, (3) α−1ρα ⊆ σ.
Тогда выполняется обобщённое соотношение (5) ρα ⊆ ασ.

Доказательство. В этом случае из цепочки соотношений

(x, y) ∈ ρα (2)⇔ (x, y) ∈ ρα ∧ (x, y) ∈ ασα−1α⇔

⇔ ∃ y′ ∈ Y (x, y) ∈ ρα ∧ (x, y′) ∈ α⇒ (x, y) ∈ αα−1ρα
(3)⇒ (x, y) ∈ ασ

получаем утверждение ∀x ∈ X ∀ y ∈ Y (x, y) ∈ ρα → (x, y) ∈ ασ, равно-
сильное соотношению (5) ρα ⊆ ασ. Теорема 5 доказана.

Теорема 6. Пусть ρ ∈ B(X), σ ∈ B(Y ), α— отношение между множе-

ствами X и Y, т. е. α ⊆ X × Y, и выполняются обобщённые соотношения

(1) ασα−1 ⊆ ρ, (4) σ ⊆ α−1ρα.

Тогда выполняется обобщённое соотношение (6) ασ ⊆ ρα.
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Доказательство. В этом случае из цепочки соотношений

(x, y) ∈ ασ (4)⇔ (x, y) ∈ ασ ∧ (x, y) ∈ αα−1ρα⇔

⇔ ∃x′ ∈ X (x, y) ∈ ασ ∧ (x′, y) ∈ α⇒ (x, y) ∈ ασα−1α
(1)⇒ (x, y) ∈ ρα

получаем утверждение ∀x ∈ X ∀ y ∈ Y (x, y) ∈ ασ → (x, y) ∈ ρα, равно-
сильное утверждению (6) ασ ⊆ ρα. Теорема 6 доказана.

Теорема 7. Пусть ρ ∈ B(X), σ ∈ B(Y ), α— отношение между множе-

ствами X и Y, т. е. α ⊆ X × Y, и выполняются обобщённые соотношения

(1) ασα−1 ⊆ ρ, (4) σ ⊆ α−1ρα.

Тогда выполняется обобщённое соотношение (7) σα−1 ⊆ α−1ρ.

Доказательство. С помощью замен

X ↔ Y, ρ↔ σ, α↔ α−1

можно увидеть, что эта теорема равносильна теореме 5. Теорема 7 дока-
зана.

Теорема 8. Пусть ρ ∈ B(X), σ ∈ B(Y ), α— отношение между множе-

ствами X и Y, т. е. α ⊆ X × Y, и выполняются обобщённые соотношения

(2) ρ ⊆ ασα−1, (3) α−1ρα ⊆ σ.
Тогда выполняется обобщённое соотношение (8) α−1ρ ⊆ σα−1.

Доказательство. С помощью замен

X ↔ Y, ρ↔ σ, α↔ α−1

можно увидеть, что эта теорема равносильна теореме 6. Теорема 8 дока-
зана.

2. Результаты для бесконечных множеств

Первые четыре теоремы доказаны в предположении, что множество X
конечно. Оказывается, что они не выполняются для бесконечных мно-
жеств. При этом никаких более слабых утверждений не добавляется,
т. е. система утверждений для бесконечных множеств имеет вид

(2) ∧ (3)→ (5), (1) ∧ (4)→ (6), (1) ∧ (4)→ (7), (2) ∧ (3)→ (8).

Независимость системы несложно проверяется с помощью компью-
тера. Теоремы 5–8 показывают корректность системы. Для того чтобы
показать полноту, нужно доказать, что все наборы, удовлетворяющие си-
стеме, возможны, т. е. достаточно предъявить пару (σ, α) для каждого
такого набора. Оказывается, что таких наборов 169, при этом для 151
из них несложно с помощью компьютера найти пары (σ, α) отношений
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на множестве мощности 4, а потом преобразовать их в пары отноше-
ний на бесконечном множестве с использованием утверждения 2. Зна-
чит, остаётся привести 18 пар отношений на множестве мощности ℵ0.
При этом достаточно привести 9 пар отношений, а остальные 9 полу-
чаются из них заменой α на α−1. Далее в виде примеров приведены эти
9 пар отношений на множестве Z>0. Подробно опишем один из примеров,
остальные проверяются аналогично.

Пример 1. Для наборов K(σ, α) = 10111111 и K(σ, α−1) = 11101111
возьмём отношения

σ = {(i, i) | i ∈ Z>0}, α = {(i+ 1, i) | i ∈ Z>0}.
Заметим, что

σα = ασ = α, σα−1 = α−1σ = α−1,

α−1σα = α−1α, ασα−1 = αα−1.

Из равенств в первой строке очевидно, что выполняются соотношения
(5)–(8). Далее по определению α получаем

αα−1 = {(i+ 1, i+ 1) | i ∈ Z>0} ⊂ σ, α−1α = {(i, i) | i ∈ Z>0} = σ,

откуда непосредственно следует, что K(σ, α) = 10111111. Такой набор
невозможен для конечных множеств в силу теоремы 2.

Пример 2. Для наборов K(σ, α) = 00111001 и K(σ, α−1) = 11000110

σ = {(i+ 1, i + 1) | i ∈ Z>0}, α = {(i + 2, i + 1) | i ∈ Z>0} ∪ {(0, 1)}.

Пример 3. Для наборов K(σ, α) = 00111011 и K(σ, α−1) = 11001110

σ = {(i+ 1, i + 1) | i ∈ Z>0} ∪ {(1, 0)},
α = {(i + 3, i+ 2) | i ∈ Z>0} ∪ {(0, 0), (0, 1), (1, 1)}.

Пример 4. Для наборов K(σ, α) = 00111101 и K(σ, α−1) = 11000111

σ = {(i+ 1, i + 1) | i ∈ Z>0} ∪ {(0, 1)},
α = {(i + 3, i+ 2) | i ∈ Z>0} ∪ {(0, 0), (0, 1), (1, 1)}.

Пример 5. Для наборов K(σ, α) = 01111111 и K(σ, α−1) = 11011111

σ = {(i, i) | i ∈ Z>0}, α = {(i+ 1, i) | i ∈ Z>0} ∪ {(0, 0)}.

Пример 6. Для наборов K(σ, α) = 00110110 и K(σ, α−1) = 11001001

σ = {(i, i) | i ∈ Z>0} ∪ {(0, 1), (1, 0)},
α = {(i + 3, i+ 2) | i ∈ Z>0} ∪ {(1, 0), (1, 1), (2, 2)}.
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Пример 7. Для наборов K(σ, α) = 00110111 и K(σ, α−1) = 11001101

σ = {(i+ 3, i+ 3) | i ∈ Z>0} ∪ {(1, 0), (2, 0)},
α = {(i+ 4, i + 3) | i ∈ Z>0} ∪ {(0, 0), (2, 1), (2, 2), (3, 3)}.

Пример 8. Для наборов K(σ, α) = 00111110 и K(σ, α−1) = 11001011

σ = {(i+ 3, i+ 3) | i ∈ Z>0} ∪ {(2, 0), (2, 1)},
α = {(i+ 4, i + 3) | i ∈ Z>0} ∪ {(1, 0), (1, 1), (2, 2), (3, 3)}.

Пример 9. Для наборов K(σ, α) = 00111111 и K(σ, α−1) = 11001111

σ = {(i, i) | i ∈ Z>0}, α = {(i+ 2, i) | i ∈ Z>0} ∪ {(0, 0)}.
В заключение приведём табл. 2 — дополненную версию табл. 1. От-

метим, что при любом σ все обобщённые централизаторы непусты, так
как K(σ, ε) = 11111111, а значит, ε принадлежит каждому обобщённо-
му централизатору. Вместе с тем, B∅

σ (X) = B(X) при любом отношении
σ, поэтому интересных обобщённых централизаторов на один меньше,
чем числа, приведённые в табл. 2. Наконец, значения в табл. 1 и 2 со-
ответствуют утверждениям 1 и 2, поскольку не убывают при движении
по таблицам слева направо или сверху вниз.

Таблица 2

Результаты перебора для всех мощностей

|X|
Число возможных

наборов
Число обобщённых
централизаторов

0 1 1
1 2 2
2 38 127
3 143 151

4 6 |X | < ℵ0 151 151
|X | > ℵ0 169 169
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Abstract. We consider generalized centralizers of a binary relation σ,
which are semi-groups of relations (multi-valued mappings) that pre-
serve the relation σ in a certain sense. Eight nonequivalent conditions
are defined to specify what the term “to preserve a relation” can mean.
All possible combinations of these conditions are considered, resulting
in different semi-groups of generalized centralizers of a binary relation,
depending on the cardinality of the set on which the relation is defined.
Specifically, eight theorems are proven, establishing the connection be-
tween these conditions: the first four theorems hold only for finite sets,
while the last four are valid for arbitrary sets. Furthermore, the com-
pleteness of this list of theorems is demonstrated for sets of cardinality
no less than 4. For each cardinality, an exhaustive answer is provided
regarding the number of distinct generalized centralizers. Tab. 2, bibli-
ogr. 5.
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ИДЕАЛЬНЫХ ДВУМЕРНЫХ ЦИРКУЛЯНТНЫХ СЕТЕЙ
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Аннотация. На основе анализа больших массивов эксперименталь-
ных данных производится поиск идеальных двумерных кольцевых
циркулянтных сетей, оптимальных по двум параметрам — диаметру
и среднему расстоянию. Ранее авторами был получен большой дата-
сет (база данных) оптимальных по диаметру двумерных кольцевых
циркулянтных сетей. В настоящей работе получен новый датасет
рассматриваемых сетей, оптимальных по среднему расстоянию. Ис-
следование графов указанных датасетов позволило вывести новые
свойства соотношений диаметра и среднего расстояния в оптималь-
ных циркулянтах и получить семейства наилучших по двум пара-
метрам оптимальных циркулянтных сетей, для которых применим
настраиваемый по числу узлов эффективный алгоритм маршру-
тизации константной сложности. Идеальные двумерные кольцевые
циркулянты представляют интерес как эффективные и надёжные
топологии для межузловых связей в сетях на кристалле и инфор-
мационно-коммуникационных системах. Ил. 6, библиогр. 27.

Ключевые слова: кольцевая циркулянтная сеть, диаметр, сред-
нее расстояние, датасет оптимальных циркулянтов, алгоритм марш-
рутизации.

Введение

Циркулянтные графы степени четыре изучаются в теории и различ-
ных прикладных областях, включая использование в качестве топологий
сетей связи суперкомпьютеров и сетей на кристалле [1–9]. Дадим общее
определение исследуемого класса сетей. Циркулянтная сеть (circulant
network) степени четыре представляет собой неориентированный граф
C(N ; s1, s2), где 1 6 s1 < s2 < N/2, с множеством вершин V = ZN =

© Э. А. Монахова, О. Г. Монахов, 2025
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{0, 1, . . . , N − 1}, в котором каждая вершина i ∈ V смежна с верши-
нами (i ± s1) mod N и (i ± s2) mod N. Числа s1, s2 — образующие, N —
порядок графа. Граф C(N ; s1, s2) связен, если НОД(N, s1, s2) = 1. Если
s1 = 1, то граф C(N ; 1, s) называется двумерным кольцевым циркулянт-

ным графом (двумерный — по числу образующих k = 2). В англоязыч-
ной литературе для этого графа применяются также названия undirected
double-loop network, chordal ring of fourth degree. На рис. 1 изображена
циркулянтная сеть C(10; 1, 4).

0
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4
5

6

7

8

9

Рис. 1. Циркулянтная сеть C(10; 1, 4)

Диаметром графа называется длина d = d(N ; s1, s2) максимально-
го кратчайшего пути на множестве всевозможных пар вершин. Среднее

расстояние (mean path length, average distance) определяется как

d = d(N ; s1, s2) =
1

N − 1

d∑

i=1

ini,

где ni — число вершин графа, находящихся на расстоянии i от нулевой
вершины. В ряде работ показано, что минимизация диаметра (средне-
го расстояния) при заданных порядке и степени графа оптимизирует
структурные задержки при передаче данных, пропускную способность
и другие характеристики топологии сети связи и напрямую влияет на по-
вышение производительности вычислительного кластера [1, 10].

Основной объект исследования в данной работе — класс циркулянт-
ных графов вида C(N ; 1, s), где N > 5, 2 6 s < N/2. Пусть

d(N) = min
s
d(N ; 1, s), d(N) = min

s
d(N ; 1, s).

Назовём оптимальным по диаметру граф C(N ; 1, s) с минимально воз-
можным для данного N диаметром d = d(N), оптимальным по среднему

расстоянию — граф C(N ; 1, s) с минимально возможным для данного N
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средним расстоянием d = d(N). Граф C(10; 1, 4) — пример графа, опти-
мального по диаметру и среднему расстоянию, при этом d = d(10) = 2,
d = d(10) = 1,4. Например, для графов C(10; 1, 2) и C(10; 1, 3) имеем
d = 3, d = 1,5.

В настоящей работе для класса двумерных кольцевых сетей C(N ; 1, s)
рассматривается решение оптимизационной проблемы поиска семейств
оптимальных по двум параметрам сетей (с минимально возможными од-
новременно диаметром и средним расстоянием) и получения применимо-
го для таких сетей эффективного алгоритма маршрутизации.

Для класса сетей C(N ; 1, s) авторами были ранее представлены в от-
крытом доступе датасет (база данных) оптимальных по диаметру графов
до N 6 50 000 вершин [11], а также полученные на его основе аналити-
чески описываемые семейства оптимальных графов [12]. В настоящей
работе путём полного перебора образующих для каждого испытуемого
N 6 4100 получен новый датасет оптимальных по среднему расстоянию
графов класса C(N ; 1, s). На основе анализа и сравнения этих двух дата-
сетов, а также рассмотрения свойств соотношений диаметра и среднего
расстояния, построена база данных идеальных графов — циркулянтных
сетей класса C(N ; 1, s) с минимально возможными одновременно диамет-
ром и средним расстоянием. Найдены аналитически задаваемые семей-
ства идеальных сетей, для которых применим масштабируемый по числу
узлов алгоритм маршрутизации сложности O(1).

1. Теоретические основы исследования

Известна [9] точная нижняя граница диаметра двумерных циркулян-
тов C(N ; s1, s2) для любого N > 5:

d(N) > D(N) = ⌈(−1 +
√
2N − 1)/2⌉.

Гипотеза Цвиели [13] предполагает, что для любого N имеет место верх-
няя оценка

d(N) 6 D(N) + 1,

которая подтверждена при N 6 6 · 106. Графы с d(N) = D(N) + 1 назы-
ваются субоптимальными. Большая часть работ в литературе посвяще-
на изучению диаметра циркулянтных графов, и известно немного работ
по исследованиям среднего расстояния циркулянтов и его соотношения
с диаметром.

В [14] показано, что нижняя граница среднего расстояния графов
C(N ; s1, s2) асимптотически стремится к

√
2N/3. В [15] получена нижняя

граница среднего расстояния двумерных циркулянтов:

d(N) = (N − 1)
√
2N − 1/3N.
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В [16] приведены некоторые соотношения между диаметром и средним
расстоянием в оптимальных графах C(N ; 1, s). Дан пример, когда опти-
мальный по диаметру граф хуже по среднему расстоянию графа с боль-
шим на единицу диаметром. Аналогичное свойство отмечено для цирку-
лянтных графов большей размерности k = 3, 4, 5.

Очевидно, что среднее расстояние, как показатель топологии сети
связи, зависит от числа вершин графа, находящихся на определённых
расстояниях (уровнях одинакового расстояния) от выделенной верши-
ны. В силу вершинной симметрии циркулянтов в качестве выделенной
рассматривается вершина с номером 0. Пусть ni обозначает число вер-
шин, находящихся на расстоянии i от 0, i ∈ 1, d, d— диаметр графа. Для
двумерных циркулянтов максимально возможное число вершин на i-м
уровне равно 4i [17, 18]. Циркулянт с полностью заполненными уров-
нями, включая диаметр, называется экстремальным. Семейство экстре-
мальных двумерных кольцевых циркулянтов существует при любом диа-
метре [9] и имеет вид {C(Nd; 1, 2d+1) | d > 1}, где Nd = 2d2+2d+1. При
этом среднее расстояние для графов экстремального семейства равно
d = (2d+1)/3 [15]. Исследованию распределения вершин графов по уров-
ням для семейств экстремальных (и наибольших известных) циркулян-
тов размерностей k = 2, 3, 4, 5 посвящена работа [19].

Введём понятие идеального оптимального графа C(N ; 1, s), следуя [5].
В идеальном оптимальном графе распределение вершин по уровням рас-
стояния относительно вершины 0 задаётся формулой

N = 1 +
d−1∑

i=1

ni + (N −Nd−1), ni = 4i, i ∈ 1, d − 1. (1)

Другими словами, для идеального циркулянта распределение числа вер-
шин по уровням расстояний от 0 до d можно представить в виде (d+1)-
мерного вектора (1, 4, 8, . . . , 4(d − 1), N − Nd−1). Следует отметить, что
впервые формула для среднего расстояния идеальных графов появилась
в работе [17]. Из принадлежности графа к множеству идеальных сле-
дует равенство его диаметра точной нижней границе D(N). Идеальные
графы достигают минимумов структурных задержек и максимума связ-
ности [17, 20].

В работе [5] в диапазоне 5 6 N 6 1000 найден 361 идеальный граф
и проведён анализ полученного множества идеальных графов. Полу-
чено несколько семейств идеальных графов, описываемых полиномами
от диаметра:

N ∈ {2d2; 2d2 ± 1; 2d2 + 2d− 1}, s = 2d− 1, d > 1;

N = 2d2 − 2d+ 5, d > 5, (2)
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s =

®
(2d2 − 4d)/3 + 2 при d = 3i, i > 2,

(2d2 + 4)/3 при d = 3i+ 1, i > 2.
(3)

Формулу (3) для образующей s последнего семейства авторы [5] найти
не смогли, при этом указали формулу (2) для N и для всех семейств
вычислили среднее расстояние в виде функции от диаметра. Исправляя
неточность в [5], приводим выражение среднего расстояния для семей-
ства (2), (3):

d(N ; 1, s) = d(2d2 − 3d+ 7)/(3(d2 − d+ 2)), d > 5.

Для других идеальных графов авторы [5] отмечают, что не нашли общего
способа их построения.

В разд. 2 дано решение этого вопроса, а также построены новые ба-
зы данных — оптимальных по среднему расстоянию циркулянтов и иде-
альных графов. В разд. 3 приведены результаты получения большого
количества семейств идеальных оптимальных графов C(N ; 1, s) с по-
рядками и образующими, описанными в виде полиномов от диаметра,
а также дана общая формула для среднего расстояния в графах иде-
альных семейств. В разд. 4 среди семейств идеальных графов найдены
масштабируемые семейства, для которых применим оптимальный алго-
ритм маршрутизации, использующий параметры укладки циркулянтов
на плоскости.

2. Новые датасеты оптимальных циркулянтов

В Интернете можно найти датасет оптимальных циркулянтов раз-
мерностей k = 2, 3, 4, 5 порядков 10 6 N 6 500 [21], в котором для
каждого N приведён один набор образующих при s1 = 1. Полученный
авторами и представленный в открытом доступе [11] датасет оптималь-
ных по диаметру циркулянтов C(N ; 1, s) размерности k = 2 порядков
10 6 N 6 50 000 включает уже весь набор образующих оптимальных
графов, что позволяет находить семейства оптимальных по диаметру
циркулянтных графов, описанных полиномами от диаметра [12]. В на-
стоящей работе продолжен поиск и исследование наилучших возможных
графов класса C(N ; 1, s).

Найдено аналитическое выражение для среднего расстояния идеаль-
ного графа C(N ; 1, s), используемое далее при получении множеств (се-
мейств) идеальных графов. Эта же формула является нижней границей
среднего расстояния в графах C(N ; 1, s) при Nd−1 < N 6 Nd. Из опреде-
ления идеального графа C(N ; 1, s) с числом вершин N, где d(N) = D(N),
следует равенство

D(N) = d(N) = d(3N − 2d2 − 1)/(3(N − 1)), (4)
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которое является необходимым и достаточным условием того, что дву-
мерный кольцевой циркулянт с числом вершин N и диаметром d = D(N)
является идеальным графом. Тем самым обобщён результат из [5] и най-
дена в общем виде формула среднего расстояния идеального графа, по-
этому при проверке на принадлежность графа к множеству идеальных
достаточно проверять выполнение (4). Формулу (4) можно использовать
также для аналитического определения среднего расстояния в графах се-
мейств идеальных графов в случае, если порядок N графов идеального
семейства описан как функция от диаметра d.

Результатом представленной работы являются два новых датасета оп-
тимальных графов C(N ; 1, s):

1) MPLset — параметры оптимальных по среднему расстоянию гра-
фов;

2) IDset — параметры идеальных графов.
Для вычислений используется система Wolfram Mathematica. Отметим,
что также можно использовать систему Wolfram Engine — свободно рас-
пространяемую альтернативу Wolfram Mathematica с урезанным графи-
ческим интерфейсом.

Алгоритм построения датасета MPLset сводится к полному перебору
образующих 2 6 s < N/2 для каждого испытуемого порядка N 6 4100
и формированию описаний всех графов с минимально возможным для

Рис. 2. Параметры графов C(N ; 1, s) из датасета MPLset
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данного N средним расстоянием:

MPLset =
{
(N, s) ∈ N | d(N) = min

26s<N/2
d(N ; 1, s), N 6 4100

}
.

Для повышения скорости вычислений проведено их распараллеливание
по наборам образующих.

Датасет IDset идеальных графов строится перебором и поиском гра-
фов из множества MPLset, удовлетворяющих условию идеальности (1).
Для найденных графов также проведена проверка равенства среднего
расстояния нижней границе (4).

На рис. 2 и 3 представлены трёхмерные графики полученных дата-
сетов точек (N, s, d, d) при 10 6 N 6 4100, отражающие параметры оп-
тимальных по среднему расстоянию и идеальных графов. Для каждого
значения N на графиках показаны все образующие s < N/2, опреде-
ляющие оптимальный граф. Датасеты найденных оптимальных графов
с числом вершин N 6 4100 доступны по ссылке [11].

На рис. 4 изображены графики зависимостей диаметра d и среднего
расстояния d от порядка N для графов из датасета MPLset — циркулян-
тов C(N ; 1, s) с минимально возможным средним расстоянием.

Рис. 3. Параметры идеальных графов C(N ; 1, s) из датасета IDset
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Рис. 4. Зависимости диаметра и среднего расстояния от порядка графа
для датасета MPLset

На основе анализа найденных графов можно отметить следующие со-
отношения свойств оптимальных графов трёх видов.

1. Не для всех N достигаются нижние границы диаметра и среднего
расстояния в классе циркулянтов C(N ; 1, s).

2. Существуют субоптимальные и оптимальные по диаметру графы
с одинаковым средним расстоянием. Например, d(30; 1, 8) = D(30) = 4,
d(30; 1, 6) = 5. Векторы распределения вершин по уровням: (1, 4, 8, 9, 8)
для s = 8 и (1, 4, 8, 10, 6, 1) для s = 6, при этом для обоих графов имеем
d = 2,6333.

3. При одинаковом d = D(N) + 1 различные распределения вершин
по уровням могут давать одинаковое среднее расстояние. Например, не-
изоморфные субоптимальные графы C(30; 1, 4) и C(30; 1, 7) имеют оди-
наковые диаметр d = 5 и среднее расстояние d = 2,7, а векторы распре-
деления по уровням равны (1, 4, 8, 8, 8, 1) и (1, 4, 8, 9, 6, 2) соответственно.

4. Диаметр графа с минимальным средним расстоянием может пре-
вышать нижнюю границу для диаметра на 3 (на рис. 4 этот случай отме-
чен крупной точкой). Так, оптимальный по среднему расстоянию граф
C(1798; 1, 762) имеет d = 33 и d = d(1798) = 20,01 в отличие от опти-
мального по диаметру графа C(1798; 1, 544), у которого d = d(1798) =
D(1798) = 30 и d = 20,02.

5. Только идеальные циркулянты достигают одновременно нижних
границ диаметра D(N) и среднего расстояния D(N).
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Среди 8499 графов датасета MPLset с 5 6 N 6 4100 идеальными
оказались 7955 (более 93%). Отметим, что для 5 6 N 6 1000 число иде-
альных графов равно 911, что существенно больше, чем 361 идеальный
граф, найденный ранее в [5].

3. Экспериментальные результаты поиска

семейств идеальных сетей

Дадим сначала общую формулировку понятия семейства оптималь-
ных графов в классе C(N ; 1, s). Под семейством оптимальных (идеаль-
ных) сетей будем понимать подмножество оптимальных (идеальных) гра-
фов класса C(N ; 1, s) с общим аналитическим описанием N = N(d)
и s = s(d) и диаметром, растущим по правилу d = dm + kP, где k > 0,
dm — минимальный диаметр, при котором граф семейства является опти-
мальным (идеальным), P = const ∈ N— период повторяемости, равный
разности диаметров «соседних» графов семейства.

На первом этапе поиска семейств идеальных сетей к графам датасета
MPLset, оптимальных по среднему расстоянию, применены алгоритмы
автоматизированного поиска аналитически описываемых семейств [12].
Порядки найденных семейств графов представляют собой квадратичные
полиномы, а их образующие — квадратичные или линейные полиномы
от диаметра d. Полученные семейства графов существуют в соответству-
ющих диапазонах изменения диаметра d. Затем проверено существова-
ние найденных семейств при диаметрах больших, чем диаметры графов
датасета MPLset (при 4100 < N 6 50 000). Для этого этапа использована
программа анализа структурных характеристик циркулянтных графов,
которая дополнительно находит векторы распределения вершин по уров-
ням. На заключительном этапе графы оставшихся семейств проверены
на выполнение равенства (4). В результате осталось 1756 семейств иде-
альных сетей, список которых также помещён в [11].

4. Идеальные циркулянтные сети

и оптимальный алгоритм маршрутизации

В [22] на основе датасета оптимальных по диаметру графов C(N ; 1, s)
получено множество семейств оптимальных графов, для которых допол-
нительно разработан эффективный оптимальный алгоритм маршрутиза-
ции [22] сложности O(1), не требующий таблиц маршрутизации и исполь-
зующий параметры плотной укладки циркулянтов на плоскости в виде
L-образных шаблонов (L-shapes) [18, 23, 24]. Параметры a, b, p, q L-образ-
ных шаблонов для циркулянтов C(N ; 1, s) показаны на рис. 5a. На рис. 5б
изображена плотная укладка на плоскости L-образного шаблона для гра-
фа C(10; 1, 4) с параметрами a = 4, b = 3, p = 2, q = 1.
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Рис. 5. a) Параметры L-образного шаблона; б) плотная укладка
L-образного шаблона на плоскости для графа C(10; 1, 4)

В [23] доказано, что L-образный шаблон циркулянтов C(N ; s1, s2) все-
гда образует плотную укладку на плоскости, и получена следующая ба-
зовая система сравнений для расположения нулей (вершин с номером 0)
на плоскости:

as1 − qs2 ≡ 0 (mod N),

−ps1 + bs2 ≡ 0 (mod N).
(5)

В [22] введено понятие L-масштабируемости аналитически описан-
ных семейств оптимальных графов, которое будем использовать далее
при анализе множества полученных семейств идеальных сетей. Семей-
ство C(N(d); 1, s(d)) L-масштабируемо, если существуют функции a(d),
b(d), p(d), q(d), описывающие параметры L-образных шаблонов плот-
ной укладки графов семейства на плоскости, для которых выполняется
система сравнений (5). L-масштабируемость семейств графов позволяет
определить параметры a, b, p, q укладки графов семейств в виде линей-
ных полиномов от диаметра, тем самым сокращая сложность алгоритмов
их определения с O(N) [18] (или O(logN) [24]) до O(1).

С использованием системы Wolfram Mathematica авторами проведе-
на проверка выполнения сравнений (5) для идеальных семейств, взятых
из датасета IDset с параметрами N, s, a, b, p, q, описанными в виде по-
линомов от диаметра. После проверки, проведённой на всём множестве
идеальных семейств, найдено 869 описаний L-масштабируемых идеаль-
ных семейств, список которых дан в соответствующем разделе датасе-
та [11]. Для этих семейств применим алгоритм маршрутизации из [22]
с аналитическим определением параметров L-образных шаблонов. Ни-
же приведён фрагмент описаний семейств, существующих для каждого
диаметра d > dm. Список включает для представленных семейств значе-
ния dm, период повторяемости P, полиномы для N и s, коэффициенты
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Рис. 6. Точки датасета L-масштабируемых идеальных семейств (чёрные)
и датасета IDset идеальных циркулянтных графов (зелёные точки)

при степенях d для параметров a, b, p, q. На рис. 6 показан трёхмерный
график датасета точек (N, s, d), 10 6 N 6 4100, полученных по описа-
ниям L-масштабируемых идеальных семейств (чёрные точки) на фоне
датасета всех идеальных графов (зелёные точки). Здесь N — число вер-
шин графа, s— образующая, d— диаметр, d— среднее расстояние графа
C(N ; 1, s).

Фрагмент датасета семейств идеальных графов с аналитическим опи-
санием и масштабируемыми параметрами L-образных шаблонов в фор-
мате {dm, P = 1, {N, s}, {{a1, a0}, {b1, b0}, {p1, p0}, {q1, q0}}}:

{2, 1, {1 + 2d+ 2d2, 1 + 2d}, {{2, 1}, {1, 1}, {1, 0}, {0, 1}}},
{3, 1, {2d2 ,−1 + 2d}, {{2,−1}, {1, 1}, {1,−1}, {0, 1}}},
{3, 1, {2d2, 1 + 2d}, {{1, 0}, {3,−1}, {1,−1}, {1, 0}}},

{3, 1, {−1 + 2d2,−1 + 2d}, {{2,−1}, {1, 1}, {1, 0}, {0, 1}}},
{3, 1, {−1 + 2d2, 1 + 2d}, {{1, 1}, {2,−1}, {0, 1}, {1, 0}}},
{3, 1, {1 + 2d2,−1 + 2d}, {{2,−1}, {1, 1}, {1,−2}, {0, 1}}},
{3, 1, {1 + 2d2, 1 + 2d}, {{2, 1}, {1, 0}, {1,−1}, {0, 1}}},
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{2, 1, {d + 2d2, 2d}, {{2, 0}, {1, 1}, {1, 0}, {0, 1}}},
{3, 1, {−1 − d+ 2d2,−2 + 2d}, {{2,−2}, {1, 1}, {1,−1}, {0, 1}}},

{3, 1, {−d + 2d2, 2d}, {{1, 0}, {2,−1}, {0, 0}, {1, 0}}},
{3, 1, {−d + 2d2,−2 + 2d}, {{2,−2}, {1, 1}, {1,−2}, {0, 1}}},
{3, 1, {1 − d+ 2d2, 2d}, {{2, 0}, {1, 0}, {1,−1}, {0, 1}}},

{3, 1, {−3 + d+ 2d2,−2 + 2d}, {{2,−2}, {1, 2}, {1,−1}, {0, 1}}},
{3, 1, {−2 + d+ 2d2,−2 + 2d}, {{2,−2}, {1, 2}, {1,−2}, {0, 1}}}.

Интересно отметить, что оптимальный граф C(10; 1, 4), изображён-
ный на рис. 1, идеальный и принадлежит семейству {C(2d2 + d; 1, 2d) |
d > 2}. Более того, это семейство L-масштабируемо, что покажем далее.

Лемма 1. Параметры L-образных шаблонов для семейства опти-

мальных циркулянтов C(2d2+d; 1, 2d), где d > 2, равны a = 2d, b = d+1,
p = d, q = 1.

Доказательство. Достаточно показать, что базовая система срав-
нений (5) для расположения нулевых вершин на плоскости выполняется
для указанных параметров при любом d > 2. Имеем

2d− 2d = 0 ≡ 0 (mod N),

−d+ (d+ 1)2d = 2d2 + d = N ≡ 0 (mod N).

Лемма 1 доказана.

Покажем, что семейство идеальных графов (2), (3) также L-масшта-
бируемо.

Лемма 2. Параметры L-образных шаблонов для семейства опти-

мальных циркулянтов C(2d2 − 2d+ 5; 1, s) с образующей

s =

®
(2d2 − 4d)/3 + 2 при d = 3i,

(2d2 + 4)/3 при d = 3i+ 1,

где d > 5, равны®
a = d+ 1, b = 2d− 1, p = 3, q = d− 2 при d = 3i,

a = 2d− 1, b = d+ 1, p = d− 2, q = 3 при d = 3i+ 1.

Доказательство. Покажем, что базовая система сравнений (5) вы-
полняется для указанных параметров при d > 5.

Если d = 3i, i > 2, имеем

(d+ 1)− (d− 2)((2d2 − 4d)/3 + 2) = (1− d/3)N ≡ 0 (mod N),

−3 + (2d − 1)((2d2 − 4d)/3 + 2) = (2d/3 − 1)N ≡ 0 (mod N).
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Аналогично, если d = 3i+ 1, i > 2, имеем

(2d− 1)− 3(2d2 + 4)/3 = −N ≡ 0 (mod N),

−(d− 2) + (d+ 1)(2d2 + 4)/3 = ((d+ 2)/3)N ≡ 0 (mod N).

Лемма 2 доказана.

Таким образом, ко всем графам семейств из лемм 1 и 2, а также всех
найденных идеальных L-масштабируемых семейств может быть приме-
нён оптимальный алгоритм маршрутизации из [22]. В отличие от ряда
других алгоритмов поиска кратчайших путей, использующих плотную
укладку графов на плоскости [25, 26], указанный алгоритм использует
минимальное число (пять) соседних нулей, при этом затрачивает мень-
шее число операций при расчёте кратчайшего пути по сравнению с ал-
горитмом из [27]. Продемонстрируем работу алгоритма маршрутизации
на примере графов идеального семейства из леммы 2. Ниже запись вида
a1[+1] + b1[+s] означает, что путь из 0 в вершину i содержит a1 шагов
по образующей s1 = 1 и b1 шагов по образующей s. Знаки a1 и b1 опреде-
ляют направление движения: в направлении образующей (+) или против
образующей (−).

Пример 1. В качестве топологии рассмотрим граф C(65; 1, 18) се-
мейства (2), (3) диаметра d = 6. Пусть требуется вычислить кратчай-
ший путь из 0 в вершину i = 50. Имеем a = 7, b = 11, p = 3, q = 4,
u = a− p = 4, v = b− q = 7.

Шаг 1. a0 = 7, b0 = 4.
Шаг 2. (a1, b1) = (50, 0) − round

(
1
65 (50, 0)

(
4 −7
7 4

))(
4 7
−7 4

)
= (3,−1).

Шаг 3. P1 = (3)[+1] + (−1)[+18]; P2 = (−1)[+1] + (−8)[+18]; P3 =
(10)[+1] + (−5)[+18]; P4 = (7)[+1] + (6)[+18]; P5 = (−4)[+1] + (3)[+18].
Кратчайший из пяти путей в вершину i = 50 есть P ′ = P1.

Пример 2. Рассмотрим граф C(89; 1, 34) семейства (2), (3) диаметра
d = 7. Требуется вычислить кратчайший путь из 0 в вершину i = 6.
Имеем a = 13, b = 8, p = 5, q = 3, u = a− p = 8, v = b− q = 5.

Шаг 1. a0 = 5, b0 = 8.
Шаг 2. (a1, b1) = (6, 0) − round

(
1
89(6, 0)

(
8 −5
5 8

))(
8 5
−5 8

)
= (−2,−5).

Шаг 3. P1 = (−2)[+1]+(−5)[+34]; P2 = (−10)[+1]+(−10)[+34]; P3 =
(3)[+1] + (−13)[+34]; P4 = (6)[+1] + (0)[+34]; P5 = (−7)[+1] + (3)[+34].
Кратчайший из пяти путей в вершину i = 6 есть P ′ = P4.

Таким образом, графы из найденных в настоящей работе семейств
идеальных циркулянтных сетей обладают не только минимально воз-
можными структурными задержками при межузловых обменах, но и эф-
фективной организацией маршрутизации. Вопросы полноты множества
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семейств идеальных графов C(N ; 1, s) на основе полученных датасетов
являются темой для будущих исследований.

Заключение

В данной работе продолжены исследования, начатые в цикле статей
по генерации датасетов оптимальных кольцевых циркулянтных сетей
степени четыре. Проектирование оптимальных сетевых топологий, об-
ладающих симметрией связей и минимальными структурными задерж-
ками при межузловых обменах, является одним из основных критериев
при разработке сетей на кристалле. На основе анализа больших массивов
экспериментальных данных нами исследовано решение проблемы поиска
двумерных кольцевых циркулянтных сетей, оптимальных по двум пара-
метрам — диаметру и среднему расстоянию. Получены и представлены
в открытом доступе новые датасеты рассматриваемых сетей - оптималь-
ных по среднему расстоянию и наилучших возможных по двум парамет-
рам так называемых идеальных сетей. Существенно расширено исследо-
вание свойств идеальных циркулянтных сетей, что позволило открыть
множество аналитически задаваемых семейств идеальных циркулянт-
ных сетей. Для таких семейств идеальных сетей применим эффектив-
ный, масштабируемый по числу узлов алгоритм маршрутизации слож-
ности O(1). Нахождение аналитическими вычислениями оптимальных
топологий с симметричной структурой построения подсистемы связей
и минимальными задержками гарантирует простоту инженерных реше-
ний и повышение эффективности функционирования сетей на кристалле
при обменах.
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Abstract. Based on analysis of large arrays of experimental data, the
problem of finding ideal two-dimensional ring circulant networks op-
timal with respect to two parameters, diameter and average distance,
is investigated. Previously, the authors obtained a large dataset (data-
base) of two-dimensional ring circulant networks that are optimal with
respect to diameter. In this paper, a new dataset of the considered net-
works that are optimal with respect to average distance is obtained.
The study of the graphs of these datasets allowed us to derive new
properties of the ratios of diameter and average distance in optimal cir-
culants and to obtain families of the best optimal circulant networks
with respect to two parameters, for which an efficient routing algorithm
of constant complexity, adjustable by the number of nodes, is applica-
ble. Ideal two-dimensional ring circulants are of interest as efficient and
reliable topologies for inter-node connections in networks on a chip and
information and communication systems. Illustr. 6, bibliogr. 27.

Keywords: undirected double loop network, diameter, mean distance,
dataset of optimal circulant networks, routing algorithm.
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Аннотация. Рассматривается задача оптимизации трафика в сети
передачи данных. Для моделирования трафика используется ими-
тационная модель. Пути передачи задаются неявно весами дуг. Если
поток по дуге превышает её пропускную способность, то дуга счита-
ется перегруженной. Задача состоит в минимизации двух целевых
функций: числа перегруженных дуг и расстояния от исходного век-
тора весов при соблюдении ограничений на суммарный поток в се-
ти и появление новых перегруженных дуг. Предложена двухстадий-
ная эволюционная схема, включающая алгоритм локального поиска
по окрестностям большой мощности для получения стартового при-
ближения границы Парето. Лучшее соседнее решение ищется при
помощи оригинальной модели целочисленного линейного програм-
мирования. Проведено сравнение предложенного подхода с лучши-
ми эволюционными алгоритмами на примерах с 628 каналами и 1324
запросами, и показано, что новая схема демонстрирует результаты,
статистически лучшие на 15–49% по многим показателям качества
(9 из 10). Табл. 3, ил. 6, библиогр. 42.

Ключевые слова: оптимизация «чёрного ящика», матэвристика,
поиск с чередующимися окрестностями, OSPF, эволюционный ал-
горитм.

Введение

В связи с постоянно растущим объёмом интернет-трафика важно эф-
фективно управлять сетевыми ресурсами, что может быть достигнуто
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путём грамотной маршрутизации трафика по каналам. Для выбора пу-
тей маршрутизации трафика существуют различные протоколы. Методы
управления трафиком включают в себя настройку весов каналов (напри-
мер, в протоколах Open shortest path first (OSPF) и Intermediate system
to intermediate system (IS-IS) [1]), использование многопротокольной ком-
мутации по меткам (multiprotocol label switching, MPLS) [2], использова-
ние централизованных контроллеров таких, как программно определяе-
мая сеть (software-defined networking, SDN) [3] и сегментная маршрути-
зация [4].

Такие протоколы, как MPLS, позволяют явно задавать пути для за-
просов. Это позволяет производить тонкую настройку сети и добиваться
большой эффективности. Например, в работах [5, 6] обсуждаются раз-
личные точные методы и эвристики для построения маршрутов в сети.
Однако такой подход требует больших вычислительных ресурсов для на-
хождения пути для каждого запроса и из-за этого плохо масштабируется
на большие сети. Также в случае отказа соединения или узла придётся
заново пересчитать маршруты для всех запросов, которые должны были
пройти по этим каналам.

В данной работе рассматриваются протоколы, которые настраивают-
ся путём задания весов сетевых соединений. Часто эти протоколы ис-
пользуют стратегию маршрутизации по кратчайшему пути [1]. Однако
в работе не используются какие-либо предположения о структуре про-
токола. Это связано с тем, что протоколы, используемые на практике,
может быть трудно явно записать математически, но потоки трафика,
создаваемые протоколом, часто могут быть смоделированы с помощью
компьютерной программы. Такие задачи, в которых мы не можем яв-
но оценить целевую функцию и ограничения, называются задачами оп-
тимизации «чёрного ящика» [7–9]. Способ маршрутизации, основанный
на кратчайших путях, может быть не таким гибким, как например MPLS,
так как не позволяет задавать различные маршруты для отдельных па-
кетов. Однако он более прост в настройке и эксплуатации, так как требу-
ет только настройки весов соединений, а также лучше масштабируется
и более устойчив к отказам оборудования.

В протоколе OSPF основной задачей является настройка весов кана-
лов. Это можно сделать, следуя некоторым простым правилам, например
установив веса обратно пропорционально пропускной способности кана-
ла [10]. Однако такое решение может быть не оптимальным, поэтому су-
ществуют также метаэвристические подходы к решению данной задачи.
Например, в статье [11] авторы разработали эвристику локального по-
иска, используя специальную нелинейную функцию стоимости. Следует
заметить, что предложенная целевая функция обрела большую популяр-
ность в литературе и используется во многих источниках, приведённых
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далее. В этой же работе авторы приводят некоторые оценки того, на-
сколько маршрутизация, основанная на весах, может отличаться от оп-
тимальной. В [12] представлен генетический алгоритм для этой задачи
поиска весов. Авторы [13] разработали алгоритм реагирования на изме-
няющиеся условия в сети. Предложенный алгоритм пытается исправить
неудовлетворительное состояние сети, возникшее из-за отказа каналов
или изменения спроса, путём небольших изменений весов. В последние
годы растущий интерес к машинному обучению побудил исследователей
применить эти методы и к решению задач маршрутизации трафика [14].

Компании могут преследовать различные цели при построении и из-
менении сети. В большинстве случаев целью задач маршрутизации тра-
фика является минимизация максимальной нагрузки на канал связи [15],
уменьшение задержек в сети [16], улучшение балансировки нагрузки [17]
или энергоэффективности [18]. Также популярна целевая функция в ви-
де упомянутой ранее специальной нелинейной функции стоимости [11].

Из-за многокритериального характера задач маршрутизации суще-
ствует множество статей, посвящённых оптимизации нескольких целе-
вых функций, а наиболее популярным методом решения таких задач яв-
ляются генетические алгоритмы, так как они естественным образом ис-
пользуют популяцию различных решений. Например, в [19] авторы при-
меняют генетический алгоритм NSGA-II для оптимизации затрат и ба-
лансировки нагрузки. Авторы используют точный метод, чтобы полу-
чить решения для небольших примеров, и сравнивают эффективность
эвристики с решениями на истинной границе Парето. В [20] обсуждается
использование эволюционных алгоритмов SPEA2 и NSGA-II для мини-
мизации перегрузки и задержки в сети. Авторы предлагают схему оп-
тимизации, которая должна помочь сетевым администраторам выбрать
подходящую конфигурацию для удовлетворения требований. В [18] оп-
тимизируются балансировка нагрузки и энергоэффективность. Авторы
предлагают эвристическую схему и сравнивают её с оптимальной про-
изводительностью сети. Сравнение алгоритмов SPEA2 и NSGA-II для
задачи определения весов с возможными сбоями соединения представ-
лено в [21]. Авторы обнаружили, что алгоритм NSGA-II демонстрирует
лучшие общие результаты для больших задач. Более подробный обзор
литературы о задаче маршрутизации трафика можно найти в [22].

Также можно отметить, что существует важная задача, являющая-
ся расширением данной: задача планирования сети, в которой требу-
ется определить, какие соединения будут существовать между узлами
и их пропускную способность. В этой задаче обычно учитывается как
физическая топология сети, на которой находятся проложенные кабе-
ли, так и логическая топология, состоящая из сконфигурированных IP-
каналов [23]. Обычно целью оптимизации является нахождение баланса
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между стоимостью решения и его устойчивостью к отказам оборудова-
ния [24], хотя дополнительно существует большое количество различных
критериев, которым должна удовлетворять сеть [25]. Для решения этой
задачи также существуют различные методы: запись в виде ЦЛП-мо-
дели [26], генетические алгоритмы [27] и подходы с использованием ма-
шинного обучения [28]. Данная задача может представлять интерес для
будущего исследования. Обзор различных направлений и задач можно
найти в [29].

В данной работе рассматривается задача оптимизации, целью кото-
рой является минимизация общего числа перегруженных каналов в се-
ти путём корректировки весов каналов. Канал называется перегружен-
ным, если поток по нему превышает его пропускную способность. Потоки
вычисляются во время моделирования сетевого протокола, который на-
значает пути для запросов на основе взвешенных длин путей. В задаче
также предпочтительно не изменять веса значительно, поскольку это мо-
жет привести к неожиданному поведению при практической реализации.
Стало быть, вторая целевая функция задачи — минимизировать расстоя-
ние до исходного вектора весов. После оптимизации существующей сети
качество обслуживания клиентов должно быть не хуже, чем оно было
до оптимизации. Тем самым если канал не был перегружен до оптимиза-
ции, то в полученном после оптимизации решении он должен оставаться
таковым. Кроме того, суммарная нагрузка на сетевые каналы не должна
увеличиваться. Эти два условия являются строгими ограничениями в за-
даче. Такие целевые функции и ограничения зависят от значений потока
трафика, полученных с помощью имитационной модели.

Основным результатом работы является следующее. Для данной за-
дачи маршрутизации трафика в сети передачи данных предложена двух-
стадийная эволюционная схема. Она включает в себя алгоритм локаль-
ного поиска по окрестностям большой мощности для получения старто-
вого приближения границы Парето. Лучшее соседнее решение ищется
при помощи оригинальной модели целочисленного линейного програм-
мирования. Проведено сравнение предложенного подхода с лучшими эво-
люционными алгоритмами, и показано, что новая схема демонстрирует
результаты, которые статистически лучше на 15–49% по многим показа-
телям качества (9 из 10). Данная статья является расширенным вариан-
том работы, представленной на конференции OPTIMA 2023 [30].

В разд. 1 приведена математическая модель задачи. В разд. 2 пред-
ставлен подход, основанный на модели линейного программирования.
Вычислительные эксперименты обсуждаются в разд. 3. Они включают
в себя описание различных показателей качества в п. 3.1, описание спо-
соба запуска эволюционных алгоритмов в п. 3.2, проверку правильности
выбора соотношения бюджетов в двухэтапной схеме в п. 3.4, сравнение
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приведённых подходов в п. 3.5 и, наконец, оценку дисперсии качества по-
лучаемых решений в п. 3.6. Краткие выводы, приведённые в заключении,
завершают статью.

1. Постановка задачи

В работе используются следующие обозначения:
• A— это множество дуг в графе, соответствующих каналам связи

в сети;
• w

0 =
(
w0
a

)
a∈A

— начальный вектор весов каналов;
• ca — пропускная способность канала a ∈ A.
Оптимизируемые переменные записаны в виде вектора w = (wa)a∈A,

содержащего веса каналов. После задания этих весов можно смоделиро-
вать поведение сети и вычислить следующие её характеристики:
• la(w)— суммарная нагрузка дуги a;

• oa(w) =

®
1, если дуга a ∈ A перегружена,

0 иначе;

• noa(w) =

®
1, если oa(w) = 1 и oa(w0) = 0,

0 иначе.
По величинам потока в сети вычисляются следующие характеристики

решения:
• общее число перегруженных каналов O(w) =

∑
a∈A

oa(w);

• расстояние D(w) = ||w −w
0||ℓ1 между начальным и текущим век-

торами весов дуг;
• суммарная загрузка сети L(w) =

∑
a∈A

la(w);

• число новых перегруженных каналов NO(w) =
∑
a∈A

noa(w).

Используя эти обозначения, задачу можно сформулировать как двух-
критериальную задачу целочисленного программирования с использова-
нием «чёрного ящика»:

O(w)→ min, (1)

D(w)→ min, (2)

L(w) 6 L(w0), (3)

NO(w) = 0, (4)

w ∈W. (5)

Формулы (1)–(5) показывают, что цель состоит в том, чтобы найти
векторы весов каналов, которые минимизируют число перегруженных
каналов и имеют наименьшее расстояние от исходного вектора w

0, при
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условии, что решения должны обеспечивать общую нагрузку на кана-
лы, не превышающую первоначальной, и не должны вызывать новых
перегрузок каналов.

Вектор весов w ∈W называется допустимым, если он удовлетворяет
условиям (3) и (4). Для двух допустимых весовых векторов w

1,w2 ∈ W
говорим, что w

1 доминирует w
2, если O(w1) 6 O(w2), D(w1) 6 D(w2)

и по крайней мере одно из этих неравенств строгое. Задача состоит в том,
чтобы найти Парето-множество решений, т. е. множество всех возмож-
ных решений без доминирования в рамках модели (1)–(5). Набор допу-
стимых решений S ⊆W называется приближением к множеству Паре-

то или аппроксимирующим множеством, если в S нет доминируемых
решений. Далее в разд. 3.1 будут представлены показатели эффектив-
ности, которые характеризуют качество аппроксимирующего множества
с разных точек зрения.

2. Эвристика, основанная на модели ЦЛП

Эвристический подход, который представлен в этом разделе, основан
на модели целочисленного линейного программирования. Установлено,
что классический локальный поиск, изменяющий вес одной дуги за раз,
быстро останавливается в локальном оптимуме. Одновременное измене-
ние нескольких весов помогает решить эту проблему, но размер такой
окрестности экспоненциально увеличивается с ростом количества изме-
няемых весов, и её просмотр становится невозможным в рамках выделен-
ного вычислительного бюджета. Для того чтобы обойти этот недостаток,
предложено предсказывать изменения потока в сети, вызванные измене-
нием нескольких весов, по изменениям, вызванным изменениями веса
одной дуги. Представленная далее математическая модель целочислен-
ного линейного программирования способна предсказать такие измене-
ния и выбрать лучшее решение в окрестности. Она использует значения
изменений потока трафика в зависимости от изменений веса какого-либо
канала и пытается подобрать комбинацию изменений нескольких весов
одновременно так, чтобы минимизировать число перегруженных дуг. Так
как изменения весов влияют друг на друга, решения, предсказанные мо-
делью, могут отличаться по качеству от настоящих, однако эксперимен-
ты показывают, что предложенный подход позволяет находить хорошие
решения.

2.1. Модель минимизации перегрузки. Путём изменения отдель-
ного веса в векторе w можно вычислить, как изменение веса одной дуги
e ∈ E ⊆ A влияет на нагрузку каждой дуги. Далее рассматриваем толь-
ко подмножество всех весов, поскольку моделирование требует больших
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вычислительных затрат, при этом желательно свести к минимуму чис-
ло вызовов имитационной модели. Структура множества E будет пред-
ставлена ниже в разд. 2.2. Пусть h обозначает размер шага, а w

e+ —
весовой вектор, полученный из w путём увеличения его e-й компоненты
по формуле we+

e = min{wmax
e , we + h}. Аналогично e-я компонента век-

тора уменьшенного веса w
e− равна we−

e = max{wmin
e , we−h}. Изменение

нагрузки для каждой дуги a ∈ A может быть вычислено в рамках одного
запуска имитационной модели следующим образом:

le+a = la(w
e+)− la(w), le−a = la(w

e−)− la(w).

Чтобы сформулировать модель ЦЛП для минимизации перегрузки,
введём булевы переменные (xa)a∈A, указывающие, перегружена соответ-
ствующая дуга или нет, и булевы переменные (λ+e ), (λ

−
e ), указывающие,

увеличивается или уменьшается вес соответствующего канала.
С этими обозначениями модель минимизации перегрузки записывает-

ся следующим образом:
∑

a∈A

xa → min, (6)

∑

e∈E

(λ+e + λ−e ) 6 k, (7)

λ+e + λ−e 6 1, e ∈ E, (8)

la(w) +
∑

e∈E

le+a λ+e +
∑

e∈E

le−a λ−e 6 ca + oa(w
0)Mxa, a ∈ A, (9)

∑

a∈A

Å
la(w) +

∑

e∈E

le+a λ+e +
∑

e∈E

le−a λ−e

ã
6 L(w0), (10)

λ+e , λ
−
e , xa ∈ {0, 1}, a ∈ A, e ∈ E. (11)

Целевая функция (6) минимизирует число перегруженных каналов.
Условия (7) ограничивают количество модификаций текущего весового
вектора w. Это необходимо, поскольку изменения компонентов вектора
веса влияют друг на друга, и одновременное изменение нескольких ком-
понентов приводит к непредсказуемым изменениям нагрузки. Поскольку
изменения нагрузки, вызванные увеличением и уменьшением веса соеди-
нения, не противоположны друг другу, в оптимальное решение модели
теоретически могут входить обе модификации одной дуги. Чтобы это
предотвратить, ограничения (8) запрещают такое поведение. Ограниче-
ния (9) указывают, что соединения, которые не были перегружены из-
начально, не должны стать перегруженными после изменения веса. Эти
ограничения, включающие достаточно большую константу M, гаранти-
руют, что переменной xa будет присвоено значение, равное единице, если
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пропускная способность соответствующего канала a будет превышена.
Наконец, неравенство (10) гарантирует, что общая нагрузка после изме-
нения весов не превысит начального значения общей нагрузки L(w0).

2.2. Поиск с чередующимися окрестностями. Здесь описан ал-
горитм, который использует модель, представленную в п. 2.1. Он на-
поминает схему спуска с чередующимися окрестностями с изменяемым
шагом [31]. При такой аналогии окрестность решения w включает реше-
ния, которые могут быть достигнуты путём изменения не более чем k
элементов вектора w на величину h. Лучшее решение из этой окрестно-
сти в предположении, что модификации различных дуг не влияют друг
на друга, можно найти, взяв оптимальное решение для модели (6)–(11).
Различные значения k и h задают различные окрестности. Введём мно-
жества K и H для возможных значений k и h. Пусть множество K
зависит от двух параметров: kmax ∈ N и категориального параметра
RT ∈ {fixed, decremental, exp}, обозначающего тип диапазона:

K(RT) =





{kmax}, если RT = fixed,

{kmax, kmax − 1, . . . , 1}, если RT = decremental,

{kmax, ⌊kmax/2
1⌋, ⌊kmax/2

2⌋, . . . , 1}, если RT = exp.

Пусть множество H зависит от параметров hmin и hmax следующим
образом:

H(hmin, hmax) = {2ihmin | i ∈ 0, 1, . . . , ⌊log2 (hmax/hmin)⌋}.
Для определения размера шага h алгоритм делит все дуги на группы
в зависимости от начальных весов:

Eg =
{
i ∈ A | 10g 6 w0

i < 10g+1
}
, G =

{
Eg | g = 0, . . . ,

⌊
log10max

i∈A
w0
i

⌋}
.

В каждой группе используются границы hmin,g =
⌈
min

{
w0
i | i ∈ Eg

}
/4
⌉

и hmax,g = 64hmin,g для шага h. В экспериментах также рассматрива-
ется вариант без разделения на группы и |G| = 1. В этом случае уста-
навливаются параметры hmin = 1 и hmax = 0,5max

i∈A
w0
i . Схема поиска

с чередующимися окрестностями на основе модели VNMS представлена
алгоритмом 1.

Процедура локального улучшения solveModel(w, h,E, k) заключает-
ся в решении модели (6)–(11) с соответствующими значениями w, h, E
и k. Алгоритм начинает с g = 1, h = hmin,1, k = kmax. Если новое реше-
ние, полученное после решения модели, не лучше старого, то параметры
обновляются следующим образом. Сначала уменьшается значение k. Ес-
ли оно становится меньше kmin, то k сбрасывается до kmax, а значение h
удваивается. Если h оказывается больше, чем hmax, то его значение уста-
навливается равным hmin, и алгоритм переходит к следующей группе.
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Алгоритм 1. Поиск с чередующимися окрестностями на основе модели

1: function VNMS(G,H,K)
2: for g = 1, . . . , |G| do

3: H ← H(hmin,g, hmax,g);
4: for all h ∈ H do

5: i← 0;
6: while i 6 |K| do

7: w
′ ← solveModel(w, h,Eg,p,K[i]);

8: if w
′ недопустимое then greedyFix(w′);

9: if w
′ лучше, чем w then w ← w

′;
10: else i← i+ 1;

11: return w;

После завершения работы с последней группой алгоритм останавлива-
ется. Однако в ходе экспериментов он перезапускался с начала, пока
бюджет вычислений оставался неисчерпанным.

Дополнительно в схеме реализован механизм быстрой починки реше-
ния, который задействуется, если решение на выходе модели ЦЛП недо-
пустимо из-за перегрузки новых дуг. Указанный механизм жадно увели-
чивает веса вновь перегруженных дуг, при этом выполняется не более 200
итераций увеличения; эта процедура названа greedyFix. Также, чтобы
ускорить поиск и внести разнообразие в алгоритм, оценивается только
случайное подмножество соседей Eg,p, в которое каждое изменение по-
падает с вероятностью p ∈ (0, 1].

Хотя такой эвристический подход может применяться сам по себе,
большой интерес представляет гибридизация этой схемы с хорошо из-
вестными многокритериальными эволюционными алгоритмами (multi-
objective evolutionary algorithm, MOEA). Оба метода имеют свои пре-
имущества и недостатки. Эволюционные алгоритмы доказали свою спо-
собность находить решения, которые очень близки к множеству Парето.
Однако им может быть трудно удовлетворить ограничения, в то время
как подход на основе представленной модели, учитывает эти ограниче-
ния явным образом. Эвристический подход позволяет получить допу-
стимые точки, далёкие от начального решения, однако он возвращает
лишь небольшое число решений, причём часть из них могут находиться
значительном расстоянии от истинной границы Парето. Следовательно,
двухэтапная схема, в которой эволюционные алгоритмы используются
для последующей оптимизации аппроксимации множества Парето, най-
денного с помощью подхода, основанного на модели, должна обеспечить
хорошие результаты.
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3. Вычислительные эксперименты

Все эксперименты, описанные в этом разделе, проводились на ком-
пьютере, оснащённом процессором Intel Core i7-8700 3,20ГГц и 32ГБ
оперативной памяти, под управлением операционной системы Microsoft
Windows 10 Pro. Для реализации модели, описанной в разд. 2, применены
библиотека PuLP 1) на языке Python и пакет CBC [32]. CBC был запу-
щен в одном потоке, в то время как все остальные операции выполнялись
параллельно с использованием всех доступных ядер.

Для оценки качества работы алгоритма было сгенерировано 13 те-
стовых примеров из предоставленного нам реального. Исходный пример
содержит |A| = 628 каналов и 1324 запроса (пары источник-назначение).
Сгенерированные примеры имеют ту же структуру графа и матрицу
источник — назначение, что и исходный пример. Отличие заключается
в векторе начальных весов w

0. В работе использованы различные схе-
мы выбора начальных весов: выбор согласно рекомендации Cisco [10],
нормализация весов исходного примера, перемешивание исходных весов
и случайное равномерное распределение весов. В итоге максимальный
вес в примерах варьируется от 10 до 10 000. Подробнее механизм генера-
ции примеров описан в [30].

3.1. Показатели качества. Для численного анализа эффективно-
сти алгоритмов применяются показатели эффективности, разработан-
ные специально для задач многокритериальной оптимизации [33] для
сравнении приближений множеств Парето. Для описания показателей
потребуются обозначения S или Sk, k ∈ N, для приближений границы
Парето, полученных с помощью исследуемых алгоритмов. В некоторых
определениях показателей используется специальное множество реше-
ний R, называемое эталонным множеством, которое является точной
Парето-границей или же заведомо достаточно хорошим приближением
к ней. Вектор целевых функций для удобства можно обозначить через
F = (fi)i∈I . В нашем случае I = {1, 2}, f1 = O и f2 = D. Рассматрива-
ются следующие показатели.

• Гиперобъём (hypervolume) определяется как объём в пространстве
целевых функций, который доминируется приближением к границе Па-
рето и ограничен сверху некоторой точкой. В качестве такой точки ис-
пользуем

(
O(w0), max

w∈R
D(w)

)
.

• Вклад (contribution) — доля точек из эталонного множества R, ко-
торые присутствуют в S.

1) https://github.com/coin-or/pulp
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• Расстояние до эталона (generational distance, GD) — это расстояние
от S до R:

GD(S,R) =
1

|S|
( ∑

w
s∈S

min
w

r∈R
‖F (ws)− F (wr)‖p

) 1
p
.

• Расстояние от эталона (inverted generational distance, IGD) — рас-
стояние от R до S: IGD(S,R) = GD(R,S). Для GD и IGD используем
p = 2.

• ε-Индикатор — это значение, необходимое для того, чтобы S адди-
тивно ε-доминировало R. Говорим, что вектор w

1 аддитивно ε-домини-

рует w
2, если fi(w1) 6 ε+ fi(w

2) для любого i ∈ I.
• Максимальная ошибка (maximum Pareto front error, MPFE) — мак-

симальное расстояние точки из S до R:

MPFE(S,R) = max
w

s∈S
min
w

r∈R
‖F (ws)− F (wr)‖.

• Показатели R1 и R2. Пусть S1 и S2 — две аппроксимации множе-
ства Парето, U — набор функций полезности u : Rm → R. Для каждого
u ∈ U и s = 1, 2 пусть задано u⋆(Ss) = min

w∈Ss

u(F (w)). Эти два показа-

теля измеряют, в какой степени S1 лучше, чем S2, по набору функций
полезности U :

C(S1, S2, u) =





1, если u⋆(S1) < u⋆(S2),

1/2, если u⋆(S1) = u⋆(S2),

0, если u⋆(S1) > u⋆(S2);

R1(S1, S2, U) =
1

|U |
∑

u∈U

C(S1, S2, u);

R2(S1, S2, U) =
1

|U |
∑

u∈U

(u⋆(S1)− u⋆(S2)).

Если R1(S1, S2, U) > 0.5, то считается, что S1 лучше, чем S2. Аналогич-
но R2(S1, S2, U) < 0 соответствует тому, что S1 показывает результаты
лучше, чем S2.

• Расстояние между решениями (spacing) рассчитывается как

SP(S) =

Ã
1

|S| − 1

|S|∑

i=1

(d̄− di)2,

где di = min
w

j∈S\wi
‖F (wi) − F (wj)‖ℓ1 — расстояние между точкой w

i ∈
S и ближайшей точкой аппроксимации множества Парето, полученной
с помощью того же алгоритма, а d̄— среднее значение di.
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Рис. 1. Качество полученной границы Парето: без начального решения w
1

• Минимальное число перегруженных дуг равно Omin(S) = min
w∈S

O(w).

• Число решений (cardinality) равно |S|.

3.2. Многокритериальные популяционные алгоритмы. В ли-
тературе одними из самых популярных для многокритериальной опти-
мизации являются алгоритмы, основанные на популяции решений [34],
поэтому в этой работе также рассмотрены несколько наиболее широко
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Рис. 2. Качество полученной границы Парето:
среднее Omin(w

1), среднее D(w1)
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используемых многокритериальных эволюционных алгоритмов. А имен-
но, применяются следующие многокритериальные алгоритмы из Java-
библиотеки MOEA framework [35]:
• NSGA-II — nondominated sorting genetic algorithm II [36];
• SPEA2 — strength Pareto evolutionary algorithm 2 [37];
• PESA-II — Pareto envelope region-based selection algorithm [38];
• PAES — Pareto archived evolutionary strategy [39].
Также протестированы другие эволюционные алгоритмы, но они по-

казали результаты хуже, чем перечисленные выше.
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PESA-II
Вторая начальная точка

Рис. 3. Качество полученной границы Парето:
хорошее Omin(w

1), среднее D(w1)

Стоит отметить, что алгоритмы, основанные на популяции, работают
намного лучше, если им предоставляются несколько начальных решений
{w0,w1, . . . ,wm}, а не только w

0. На рис. 1–5 представлено поведение
алгоритмов при двух начальных решениях {w0,w1} для различных зна-
чений w

1, при этом по горизонтальной оси отложено число перегружен-
ных каналов, а по вертикальной — расстояние до границы Парето. Все
результаты соответствуют исходному примеру.

Как видно из рис. 1–5, качество результатов, достигаемых с помощью
алгоритмов, сильно зависит от исходных решений. Желательно, чтобы
в начальной популяции было по возможности близкое к w

0 решение, ко-
торое имеет как можно меньшее значение O(w). Последнее необходимо
для того, чтобы иметь возможность находить промежуточные потенци-
альные решения.
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Рис. 4. Качество полученной границы Парето:
хорошее Omin(w

1), хорошее D(w1)

Из-за присутствия ограничений в задаче эволюционным алгоритмам
трудно исследовать пространство решений и находить хорошие отдалён-
ные. Для повышения качества итоговых решения можно инициализиро-
вать популяцию с помощью решений, полученных при помощи метода,
учитывающего эти ограничения, подобного тому, который представлен
в разд. 2.
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Рис. 5. Качество полученной границы Парето:
хорошее Omin(w

1), плохое D(w1)
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В предыдущей работе [30] было показано, что алгоритм PAES наилуч-
шим образом среди эволюционных алгоритмов подходит для нахождения
решений с малым числом перегруженных дуг. Там же было показано, что
гибридизация других популяционных алгоритмов с PAES улучшает ка-
чество найденных решений, а среди таких вариантов выигрывает схема,
в которой на 50 000 оцениваний целевой функции запускается PAES, по-
сле чего запускается алгоритм PESA-II с бюджетом 70 000 оцениваний
целевой функции.

3.3. Выбор параметров. Чтобы определить хорошие значения па-
раметров схемы VNMS, было решено использовать инструмент оптими-
зации гиперпараметров SMAC3 [42]. Так как схема может использоваться
в двух вариантах — как самостоятельный алгоритм и в связке с PESA-II,
были найдены два набора параметров: RT = exp, kmax = 8, p = 0,33 с раз-
делением на группы для первого варианта и RT = decremental, kmax = 4,
p = 0,5 без использования групп для второго. Схемы с этими парамет-
рами будем называть VNMSfast и VNMSlong соответственно.
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Рис. 6. Зависимость показателей качества от количества оцениваний
целевой функции, выделенных на эволюционный алгоритм:

a — расстояние от эталона, б — гиперобъём

3.4. Распределение бюджета между этапами. В этом экспери-
менте производится проверка, что соотношение вычислительных бюдже-
тов, выделенных на построение решений с помощью схемы VNMS и на их
последующее улучшение с помощью эволюционного алгоритма, выбра-
но верно. Для этого выполнена серия запусков с одинаковым суммарным
бюджетом, равным, как и ранее, 120 000, но с разным соотношением бюд-
жетов между этапами. На рис. 6 отражены зависимости среднего рас-
стояния от эталона и среднего гиперобъёма от количества оцениваний
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целевой функции, выделенных на эволюционный алгоритм. Остальной
бюджет потрачен предложенной схемой на генерацию начальных реше-
ний. Закрашенная полоса обозначает доверительный интервал для уров-
ня доверия 0,95.

Из графиков видно, что минимум расстояния, как и максимум объё-
ма, достигается при бюджете, выделенном на эволюционный алгоритм,
равном 80 000. Это говорит о том, что соотношение бюджетов, использо-
ванное ранее, близко к оптимальному, хотя можно добиться небольшого
улучшения, если увеличить бюджет на улучшение решений эволюцион-
ным алгоритмом.

3.5. Сравнение схем. В этом пункте сравниваются схемы, выбран-
ные ранее, а именно: PAES+PESA-II, VNMSfast+PESA-II и VNMSlong.
Первые две схемы двухэтапные, где часть бюджета выделяется на по-
строение начальных решений, а оставшийся бюджет расходуется PESA-
II, использующим эти решения в качестве стартовых. Для краткости обо-
значений назовём двухэтапные схемы PPESA и VPESA соответственно,
а для алгоритма VNMSlong будем также использовать просто обозначение
VNMS. Общий объём вычислений для всех трёх схем примерно одинаков
и составляет 12 минут или 120 000 вычислений целевой функции.

Каждый алгоритм запущен по 10 раз, а затем с использованием ре-
зультатов этих запусков применены два U-критерия Манна — Уитни [40]
для каждого примера, каждой пары вариантов запусков и всех индика-
торов, за исключением индикаторов R1 и R2. Нулевая гипотеза состоит
в том, что вероятность того, что значение показателя для первого ал-
горитма в попарном сравнении будет лучше значения для второго ал-
горитма, не превышает вероятности того, что значение показателя для

Таблица 1

Число побед в попарных сравнениях выбранных схем

Показатель PPESA:VPESA VPESA:VNMS VNMS:PPESA

Гиперобъём 1:11 11:0 6:6

Вклад 1:7 11:0 1:8

Расст. до эталона 3:7 12:0 1:11

Расст. от эталона 1:12 11:0 9:3

ε-индикатор 0:11 2:2 0:12

Макс. ошибка 5:4 9:0 1:7

R1 0:11 2:2 10:0

R2 0:11 2:2 11:0

Omin 0:12 0:3 13:0

Число решений 0:10 13:0 2:10
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второго варианта будет лучше значения для первого варианта. Для ин-
дикаторов R1 и R2 проверены критерии знаковых рангов Уилкоксона [41]
с нулевой гипотезой о том, что один вариант не лучше другого с точки
зрения значений индикаторов R1, R2 (п. 3.1).

Говорим, что первый алгоритм выигрывает на данном примере по дан-
ному показателю, если нулевая гипотеза о том, что второй алгоритм
не лучше первого, отвергается и принимается альтернативная гипотеза
о том, что он лучше. Аналогично говорим, что первый алгоритм про-
игрывает, если принимается альтернативная гипотеза о том, что второй
алгоритм лучше в этом случае и по данному показателю. В случае, если
не принимается ни одна из альтернативных гипотез, говорим, что эти
варианты эквиваленты. Результаты сравнений представлены в табл. 1.
Первое число пары, разделённое двоеточием — это число побед первого
алгоритма в паре, а второе число — число побед второго.

Как видно из табл. 1, двухэтапная схема с использованием VNMSfast

для генерации исходных решений работает наилучшим образом из прове-
ренных вариантов. Схема VNMSlong также даёт хорошие результаты. Хо-
тя гибридная схема, использующая эволюционные алгоритмы, аппрок-
симирует границу Парето вблизи исходного решения намного лучше,
чем VNMSlong, последняя значительно превосходит эволюционные ме-
тоды (включая PAES) в поиске решений с малыми значениями O(w).
Это приводит к улучшению расстояния от эталона, ε-индикатора и Omin

и сопоставимым результатам с точки зрения гиперобъёма. Схема VPESA
использует преимущества обоих подходов, что приводит к получению бо-
лее качественных решений.

Таблица 2

Средние значения показателей

и относительное улучшение алгоритмов

Показатель PPESA VNMS VPESA Улучш.
VNMS

Улучш.
VPESA

Гиперобъём 0,336 0,345 0,381 0,043 0,153

Вклад 0,164 0,113 0,211 −0,133 0,392

Расст. до эталона 0,010 0,020 0,008 −0,914 0,201

Расст. от эталона 0,102 0,070 0,046 0,222 0,494

ε-индикатор 0,299 0,131 0,135 0,511 0,492

Макс. ошибка 0,114 0,169 0,106 −1,028 −0,240
Omin 177,163 166,061 166,783 0,063 0,060

Число решений 32,489 25,207 42,990 −0,198 0,316

Расстояние 0,537 1,529 0,505 — —
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В табл. 2 представлены средние значения показателей и относитель-
ные улучшения этих показателей для предложенных схем относительно
эволюционного алгоритма. Для показателя «Расстояние между решени-
ями» не приведены значения улучшения, так как он не отражает напря-
мую качество решений.

Видно, что хотя алгоритм VNMSlong проигрывает по некоторым по-
казателям, двухэтапная схема VPESA превосходит эволюционные алго-
ритмы почти по всем показателям на 15–49%.

3.6. Дисперсия схемы. Наконец, проведены эксперименты с целью
установить разброс качества получаемых решений, для чего схема была
запущена 80 раз на каждом примере. В табл. 3 представлены результаты
этих экспериментов. Колонка «Стандартное отклонение» содержит зна-
чение среднеквадратического отклонения для каждого параметра, усред-
нённого по всем примерам, а колонка «Относительное стандартное от-
клонение» — величину стандартного отклонения, поделённого на среднее
значение показателя, также усреднённую по всем примерам.

Таблица 3

Статистики показателей качества решений

Показатель Среднее Станд.
отклон.

Относит.
станд.
отклон.

Гиперобъём 0,370 0,019 0,051

Вклад 0,109 0,041 0,498

Расст. до эталона 0,012 0,003 0,266

Расст. от эталона 0,060 0,014 0,239

ε-индикатор 0,140 0,040 0,303

Макс. ошибка 0,132 0,035 0,265

Omin 165,786 2,627 0,016

Число решений 42,945 2,969 0,076

Расстояние 0,515 0,142 0,429

Из табл. 3 видно, что некоторые показатели имеют небольшой раз-
брос, в то время как другие могут значительно отклоняться от среднего
значения. Наибольший разброс имеет вклад в эталонное решение, так как
эта метрика зависит от точного расположения решений в пространстве
целевых функций: если хоть по одной целевой функции решение чуть ху-
же, то оно не засчитывается как решение, вносящее вклад. Также сильно
меняется расстояние между решениями, хотя число решений на Парето-
границе меняется несильно. Вместе с малым изменением гиперобъёма
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это может говорить о том, что основные опорные точки находятся вер-
но, но промежуточные точки могут находиться в разных частях Парето-
границы. Это же может быть причиной средних разбросов расстояний
от и до эталона, ε-индикатора и максимальной ошибки.

Заключение

В работе рассмотрена новая двухкритериальная задача оптимизации
«чёрного ящика» для управления потоком трафика в сети. Задача за-
ключается в поиске такой реконфигурации весов для сетевых каналов,
используемых протоколом маршрутизации, при которой число перегру-
женных каналов сведено к минимуму, а разница между старыми и но-
выми весами минимальна. Новые веса не должны увеличивать общий
поток и не должны создавать новые перегруженные каналы. В ходе ра-
боты разработана специализированная схема для решения этой задачи
и проведены сравнительные эксперименты для этой схемы и метаэври-
стических алгоритмов общего назначения.

Эксперименты показали, что алгоритм PESA2 из библиотеки MOEA
Framework работает наилучшим образом среди проверенных метаэври-
стик, часто встречающихся в литературе. Тесты показали, что хотя упо-
мянутые алгоритмы могут находить хорошую границу Парето, им труд-
но находить решения с небольшим числом перегруженных каналов, по-
этому они значительно выигрывают от хороших начальных точек. Эти
алгоритмы могут эффективно заполнять пробелы между заданными точ-
ками.

Обнаружено, что изменение весов по одному не позволяет найти хоро-
шие решения с точки зрения числа перегруженных каналов, а просмотр
окрестности, состоящий в изменении нескольких весов, занимает слиш-
ком большое время. Ввиду этого в работе разработана модель целочис-
ленного линейного программирования (6)–(11) для поиска наилучшего
решения в аппроксимации большой окрестности. Для этой модели вы-
числяются изменения нагрузки на канал после изменения одного веса.
Модель ищет комбинацию из нескольких модификаций, которая миними-
зирует число перегруженных каналов. Затем предложен итерационный
алгоритм VNMS для исходной задачи, основанный на этой модели. Этот
алгоритм изменяет параметры модели для получения более качествен-
ных итоговых решений.

Алгоритм VNMS может быть использован для двух целей: найти ре-
шение с небольшим числом перегруженных каналов за короткое время
или найти всё множество Парето. Во втором случае алгоритм демон-
стрирует хорошие результаты при решении однокритериальной задачи
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минимизации числа перегруженных каналов, которые близки к резуль-
татам, полученным с помощью гибридного алгоритма на основе попу-
ляционных методов и известного алгоритма PAES. Комбинация VNMS
с алгоритмами, основанными на популяции, показывает статистически
лучшие на 15–49% результаты для исходной задачи, поскольку она ис-
пользует преимущества обоих подходов.
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A HYBRID ALGORITHM FOR A TWO-OBJECTIVE TRAFFIC
ENGINEERING PROBLEM
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Abstract. We consider an Internet traffic routing problem. The paths
for requests are assigned implicitly by setting link weights. The loads of
links are generated by a simulator. If the load of a link is greater than its
capacity, then the link is called congested. Our goal is to minimize two
objective functions: the number of congested links and the distance be-
tween the initial and current weight vectors. The problem also includes
two constraints: the total link flow in the network has an upper bound
and new congested links are unwanted. We propose a new two-stage
evolutionary scheme. The scheme employs a local search algorithm with
a large neighbourhood to find an initial approximation of the Pareto set.
The algorithm utilizes an integer linear programming model to deter-
mine the best solution in the neighbourhood. We compare the proposed
scheme with well-known evolutionary algorithms using instances with
628 links and 1324 requests. According to the experiments, the proposed
scheme constructs solutions statistically better at 15–49% for many per-
formance indicators (9 out of 10). Tab. 3, illustr. 6, bibliogr. 42.

Keywords: black box optimization, matheuristic, variable neighbour-
hood search, OSPF, evolutionary algorithm.
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