Гибридный алгоритм для двухкритериальной задачи оптимизации трафика в сети

Гибридный алгоритм для двухкритериальной задачи оптимизации трафика в сети

Юськов А. Д., Кулаченко И. Н., Мельников А. А., Кочетов Ю. А.

УДК 519.8 
DOI: 10.33048/daio.2025.32.827


Аннотация:

Рассматривается задача оптимизации трафика в сети передачи данных. Для моделирования трафика используется имитационная модель. Пути передачи задаются неявно весами дуг. Если поток по дуге превышает её пропускную способность, то дуга считается перегруженной. Задача состоит в минимизации двух целевых функций: числа перегруженных дуг и расстояния от исходного вектора весов при соблюдении ограничений на суммарный поток в сети и появление новых перегруженных дуг. Предложена двухстадийная эволюционная схема, включающая алгоритм локального поиска по окрестностям большой мощности для получения стартового приближения границы Парето. Лучшее соседнее решение ищется при помощи оригинальной модели целочисленного линейного программирования. Проведено сравнение предложенного подхода с лучшими эволюционными алгоритмами на примерах с 628 каналами и 1324 запросами, и показано, что новая схема демонстрирует результаты, статистически лучшие на 15–49% по многим показателям качества (9 из 10). 

Табл. 3, ил. 6, библиогр. 42.

Литература:
  1. Altın A., Fortz B., Thorup M., Ümit H. Intra-domain traffic engineering with shortest path routing protocols // Ann. Oper. Res. 2013. V. 204, No. 1. P. 65–95. DOI: 10.1007/s10479-012-1270-7.
     
  2. Elwalid A., Jin C., Low S., Widjaja I. MATE: MPLS adaptive traffic engineering // Twenty years into the communications odyssey. Proc. 20th Annu. Joint Conf. IEEE Computer and Communications Societies (Anchorage, AK, Apr. 22–26, 2001). V. 3. Washington: IEEE Comput. Soc., 2001. P. 1300– 1309. DOI: 10.1109/infcom.2001.916625.
     
  3. Abbasi M., Guleria A., Devi M. Traffic engineering in software defined networks: A survey // J. Telecommun. Inf. Technol. 2016. V. 4. P. 3–14.
     
  4. Bhatia R., Hao F., Kodialam M., Lakshman T. Optimized network traffic engineering using segment routing // Proc. 2015 IEEE Conf. Computer Communications (Hong Kong, China, Apr. 26 – May 1, 2015). Piscataway: IEEE, 2015. P. 657–665. DOI: 10.1109/INFOCOM.2015.7218434.
     
  5. Wang Y., Wang Z. Explicit routing algorithms for Internet traffic engineering // Proc. 8th Int. Conf. Computer Communications and Networks (Boston, MA, Oct. 11–13, 1999). Piscataway: IEEE, 1999. P. 582–588. DOI: 10.1109/ICCCN.1999.805577.
     
  6. Poppe F., Van den Bosch S., de La Vallée-Poussin P., Van Hove H., De Neve H., Petit G. Choosing the objectives for traffic engineering in IP backbone networks based on quality-of-service requirements // Quality of future Internet service. Proc. 1st COST 263 Int. Workshop (Berlin, Germany, Sept. 25–26, 2000). Heidelberg: Springer, 2000. P. 129–140. (Lect. Notes Comput. Sci.; V. 1922). DOI: 10.1007/3-540-39939-9_11.
     
  7. Audet C., Hare W. Derivative-free and blackbox optimization. Cham: Springer, 2017. 302 p. DOI: 10.1007/978-3-319-68913-5.
     
  8. Yuskov A. D., Kulachenko I. N., Melnikov A. A., Kochetov Yu. A. Stadium antennas deployment optimization // Mathematical optimization theory and operations research. Proc. 23rd Int. Conf. MOTOR 2024 (Omsk, Russia, June 30 – July 6, 2024). Cham: Springer, 2024. P. 449–461. (Lect. Notes Comput. Sci.; V. 14766). DOI: 10.1007/978-3-031-62792-7_30.
     
  9. Юськов А. Д., Кулаченко И. Н., Мельников А. А., Кочетов Ю. А. Метод декомпозиции для управления запасами в двухэшелонной системе складов // Дискрет. анализ и исслед. операций. 2024. Т. 31, № 4. С. 186–212.
     
  10. Internetworking technologies handbook. Indianapolis: Cisco Press, 2000. 1078 p.
     
  11. Fortz B., Thorup M. Internet traffic engineering by optimizing OSPF weights // Reaching the Promised Land of communications. Proc. 20th Annu. Joint Conf. IEEE Computer and Communications Societies (Tel Aviv, Israel, Mar. 26–30, 2000). V. 2. Washington: IEEE Comput. Soc., 2000. P. 519–528. DOI: 10.1109/INFCOM.2000.832225. 
     
  12. Ericsson M., Resende M., Pardalos P. A genetic algorithm for the weight setting problem in OSPF routing // J. Comb. Optim. 2002. V. 6. P. 299–333. DOI: 10.1023/A:1014852026591.
     
  13. Fortz B., Thorup M. Optimizing OSPF/IS-IS weights in a changing world // IEEE J. Sel. Areas Commun. 2002. V. 20. P. 756–767. DOI: 10.1109/JSAC. 2002.1003042.
     
  14. Kodialam M. S., Lakshman T. V. Network link weight setting: A machine learning based approach // Proc. IEEE Conf. Computer Communications (London, May 2–5, 2022). Piscataway: IEEE, 2022. P. 2048–2057. DOI: 10.1109/INFOCOM48880.2022.9796922.
     
  15. Pióro M., Szentesi Á., Harmatos J., Jüttner A., Gajowniczek P., Kozdrowski S. On open shortest path first related network optimisation problems // Perform. Eval. 2002. V. 48, No. 1–4. P. 201–223. DOI: 10.1016/S0166-5316(02)00036-6.
     
  16. Balon S., Skivée F., Leduc G. How well do traffic engineering objective functions meet TE requirements? // NETWORKING 2006. Networking technologies, services, protocols; Performance of computer and communication networks; Mobile and wireless communications systems. Proc. 5th Int. IFIPTC6 Networking Conf. (Coimbra, Portugal, May 15–19, 2006). Heidelberg: Springer, 2006. P. 75–86. (Lect. Notes Comput. Sci.; V. 3976). DOI: 10.1007/11753810_7.
     
  17. Blanchy F., Melon L., Leduc G. Routing in a MPLS network featuring preemption mechanisms // Proc. 10th Int. Conf. Telecommunications (Papeete, French Polynesia, Feb. 23 – Mar. 1, 2003). V. 1. Piscataway: IEEE, 2003. P. 253–260. DOI: 10.1109/ICTEL.2003.1191228.
     
  18. Athanasiou G., Tsagkaris K., Vlacheas P., Karvounas D., Demestichas P. Multi-objective traffic engineering for future networks // IEEE Commun. Lett. 2012. V. 16, No. 1. P. 101–103. DOI: 10.1109/LCOMM.2011. 110711.112071.
     
  19. El-Alfy E.-S. M. Flow-based path selection for Internet traffic engineering with NSGA-II // Proc. 17th Int. Conf. Telecommunications (Doha, Qatar, Apr. 4–7, 2010). Piscataway: IEEE, 2010. P. 621–627. DOI: 10.1109/ICTEL. 2010.5478839.
     
  20. Sousa P., Cortez P., Rio M., Rocha M. Traffic engineering approaches using multicriteria optimization techniques // Wired/wireless internet communications. Proc. 9th IFIP TC 6 Int. Conf. (Vilanova i la Geltrú, Spain, June 15–17, 2011). Heidelberg: Springer, 2011. P. 104–115. (Lect. Notes Comput. Sci.; V. 6649). DOI: 10.1007/978-3-642-21560-5_9.
     
  21. Pereira V., Sousa P., Rocha M. A comparison of multi-objective optimization algorithms for weight setting problems in traffic engineering // Nat. Comput. 2022. V. 21. P. 507–522. DOI: 10.1007/s11047-020-09807-1.
     
  22. Wang N., Ho K. H., Pavlou G., Howarth M. An overview of routing optimization for internet traffic engineering // IEEE Commun. Surv. Tutor. 2008. V. 10, No. 1. P. 36–56. DOI: 10.1109/COMST.2008.4483669.
     
  23. Kaneda S., Uyematsu T., Nagatsu N., Sato K. Network design and cost optimization for label switched multilayer photonic IP networks // IEEE J. Sel. Areas Commun. 2005. V. 23, No. 8. P. 1612–1619. DOI: 10.1109/JSAC.2005. 851747.
     
  24. Zhang-Shen R., McKeown N. Designing a predictable Internet backbone network // Proc. 3rd Workshop Hot Topics in Networks (HotNetsIII) (San Diego, CA, Nov. 15–16, 2004). New York: ACM SIGCOMM, 2004. 6 p. URL: conferences.sigcomm.org/hotnets/2004/HotNets-III% 20Proceedings/zhang-shen.pdf (accessed: 10.10.2025). 
     
  25. Clark D. D. Designing an Internet. Cambridge, MA: MIT Press, 2018. 432 p.
     
  26. Holmberg K., Yuan D. Optimization of internet protocol network design and routing // Networks. 2004. V. 43, No. 1. P. 39–53. DOI: 10.1002/net.10102.
     
  27. Dehghani M., Vahdat V., Amiri M., Rabiei E., Salehi S. A multiobjective optimization model for a reliable generalized flow network design // Comput. Ind. Eng. 2019. V. 138. Article ID 106074. 32 p. DOI: 10.1016/j.cie.2019.106074.
     
  28. Zhu H., Gupta V., Ahuja S. S., Tian Y., Zhang Y., Jin X. Network planning with deep reinforcement learning // Proc. ACM SIGCOMM 2021 Conf. (Delft, Netherlands, Aug. 23–28, 2021). New York: ACM, 2021. P. 258– 271. DOI: 10.1145/3452296.3472902.
     
  29. Wong R. T. Telecommunications network design: Technology impacts and future directions // Networks. 2021. V. 77, No. 2. P. 205–224. DOI: 10.1002/ net.21997.
     
  30. Yuskov A. D., Kulachenko I. N., Melnikov A. A., Kochetov Yu. A. Two-stage algorithm for bi-objective black-box traffic engineering // Optimization and applications. Rev. Sel. Pap. 14th Int. Conf. OPTIMA 2023 (Petrovac, Montenegro, Sept. 18–22, 2023). Cham: Springer, 2023. P. 110–125. (Lect. Notes Comput. Sci.; V. 14395). DOI: 10.1007/978-3-031-47859-8_9.
     
  31. Hansen P., Mladenović N., Todosijević R., Hanafi S. Variable neighborhood search: Basics and variants // EURO J. Comput. Optim. 2016. V. 5, No. 3. P. 423–454. DOI: 10.1007/s13675-016-0075-x.
     
  32. Forrest J., Ralphs T., Vigerske S. [et al.]. COIN-OR Branch-and-Cut solver. Genève: CERN; Zenodo, 2023. DOI: 10.5281/zenodo.10041724.
     
  33. Audet C., Bigeon J., Cartier D., Le Digabel S., Salomon L. Performance indicators in multiobjective optimization // Eur. J. Oper. Res. 2021. V. 292, No. 2. P. 397–422. DOI: 10.1016/j.ejor.2020.11.016.
     
  34. Konak A., Coit D. W., Smith A. E. Multi-objective optimization using genetic algorithms: A tutorial // Reliab. Eng. Syst. Saf. 2006. V. 91, No. 9. P. 992–1007. DOI: 10.1016/j.ress.2005.11.018.
     
  35. Hadka D. MOEA framework: A free and open source Java framework for multiobjective optimization. Version 5.1. 2025. URL: moeaframework.org (accessed: 10.10.2025).
     
  36. Deb K., Pratap A., Agarwal S., Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II // IEEE Trans. Evolut. Comput. 2002. V. 6, No. 2. P. 182–197. DOI: 10.1109/4235.996017.
     
  37. Zitzler E., Laumanns M., Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm. Inst. Tech. Inform. Kommun. rep. 103. Zürich: ETH Zürich, 2001. DOI: 10.3929/ethz-a-004284029.
     
  38. Corne D. W., Jerram N. R., Knowles J. D., Oates M. J. PESA-II: Region-based selection in evolutionary multiobjective optimization // Proc. 3rd Annu. Conf. Genetic and Evolutionary Computation (San Francisco, CA, July 7–11, 2001). San Francisco: Morgan Kaufmann Publ., 2001. P. 283–290.
     
  39. Knowles J. D., Corne D. W. Approximating the nondominated front using the Pareto archived evolution strategy // Evolut. Comput. 2000. V. 8, No. 2. P. 149–172. DOI: 10.1162/106365600568167.
     
  40. Mann H. B., Whitney D. R. On a test of whether one of two random variables is stochastically larger than the other // Ann. Math. Stat. 1947. V. 18, No. 1. P. 50–60. DOI: 10.1214/aoms/1177730491.
     
  41. Wilcoxon F. Individual comparisons by ranking methods // Biom. Bull. 1945. V. 1, No. 6. P. 80–83.
     
  42. Lindauer M., Eggensperger K., Feurer M. [et al.]. SMAC3: A versatile Bayesian optimization package for hyperparameter optimization // J. Mach. Learn. Res. 2022. V. 23. Article ID 54. 9 p.

Исследование выполнено в рамках государственного задания Института математики им. С. Л. Соболева (проект № FWNF–2022–0019). Дополнительных грантов на проведение или руководство этим исследованием получено не было.


Юськов Александр Дмитриевич
  1. Новосибирский гос. университет, 
    ул. Пирогова, 2, 630090 Новосибирск, Россия

E-mail: a.yuskov@g.nsu.ru 

Кулаченко Игорь Николаевич
  1. Институт математики им. С. Л. Соболева, 
    пр. Акад. Коптюга, 4, 630090 Новосибирск, Россия

E-mail: ink@math.nsc.ru 

Мельников Андрей Андреевич
  1. Институт математики им. С. Л. Соболева, 
    пр. Акад. Коптюга, 4, 630090 Новосибирск, Россия

E-mail: melnikov@math.nsc.ru 

Кочетов Юрий Андреевич
  1. Институт математики им. С. Л. Соболева, 
    пр. Акад. Коптюга, 4, 630090 Новосибирск, Россия

E-mail: jkochet@math.nsc.ru 

Статья поступила 3 февраля 2025 г.
После доработки — 23 мая 2025 г.
Принята к публикации 22 июня 2025 г.

Abstract:

We consider an Internet traffic routing problem. The paths for requests are assigned implicitly by setting link weights. The loads of links are generated by a simulator. If the load of a link is greater than its capacity, then the link is called congested. Our goal is to minimize two objective functions: the number of congested links and the distance between the initial and current weight vectors. The problem also includes two constraints: the total link flow in the network has an upper bound and new congested links are unwanted. We propose a new two-stage evolutionary scheme. The scheme employs a local search algorithm with a large neighbourhood to find an initial approximation of the Pareto set. The algorithm utilizes an integer linear programming model to determine the best solution in the neighbourhood. We compare the proposed scheme with well-known evolutionary algorithms using instances with 628 links and 1324 requests. According to the experiments, the proposed scheme constructs solutions statistically better at 15–49% for many performance indicators (9 out of 10). 

Tab. 3, illustr. 6, bibliogr. 42.

References:
  1. A. Altın, B. Fortz, M. Thorup, and H. Ümit, Intra-domain traffic engineering with shortest path routing protocols, Ann. Oper. Res. 204 (1), 65–95 (2013), DOI: 10.1007/s10479-012-1270-7.
     
  2. A. Elwalid, C. Jin, S. Low, and I. Widjaja, MATE: MPLS adaptive traffic engineering, in Twenty Years into the Communications Odyssey, Proc. 20th Annu. Joint Conf. IEEE Computer and Communications Societies (Anchorage, AK, Apr. 22–26, 2001), Vol. 3 (IEEE Comput. Soc., Washington, 2001), pp. 1300–1309, DOI: 10.1109/infcom.2001.916625.
     
  3. M. Abbasi, A. Guleria, and M. Devi, Traffic engineering in software defined networks: A survey, J. Telecommun. Inf. Technol. 4, 3–14 (2016).
     
  4. R. Bhatia, F. Hao, M. Kodialam, and T. Lakshman, Optimized network traffic engineering using segment routing, in Proc. 2015 IEEE Conf. Computer Communications (Hong Kong, China, Apr. 26 – May 1, 2015) (IEEE, Piscataway, 2015), pp. 657–665, DOI: 10.1109/INFOCOM.2015.7218434.
     
  5. Y. Wang and Z. Wang, Explicit routing algorithms for Internet traffic engineering, in Proc. 8th Int. Conf. Computer Communications and Networks (Boston, MA, Oct. 11–13, 1999) (IEEE, Piscataway, 1999), pp. 582–588, DOI: 10.1109/ICCCN.1999.805577.
     
  6. F. Poppe, S. Van den Bosch, P. de La Vallée-Poussin, H. Van Hove, H. De Neve, and G. Petit, Choosing the objectives for traffic engineering in IP backbone networks based on quality-of-service requirements, in Quality of Future Internet Service, Proc. 1st COST 263 Int. Workshop (Berlin, Germany, Sept. 25–26, 2000) (Springer, Heidelberg, 2000), pp. 129–140 (Lect. Notes Comput. Sci., Vol. 1922), DOI: 10.1007/3-540-39939-9_11.
     
  7. C. Audet and W. Hare, Derivative-Free and Blackbox Optimization (Springer, Cham, 2017), DOI: 10.1007/978-3-319-68913-5.
     
  8. A. D. Yuskov, I. N. Kulachenko, A. A. Melnikov, and Yu. A. Kochetov, Stadium antennas deployment optimization, in Mathematical Optimization Theory and Operations Research, Proc. 23rd Int. Conf. MOTOR 2024 (Omsk, Russia, June 30 – July 6, 2024) (Springer, Cham, 2024), pp. 449–461 (Lect. Notes Comput. Sci., Vol. 14766), DOI: 10.1007/978-3-031-62792-7_30.
     
  9. A. D. Yuskov, I. N. Kulachenko, A. A. Melnikov, and Yu. A. Kochetov, Decomposition approach for a two-echelon inventory management system, Diskretn. Anal. Issled. Oper. 31 (4), 186–212 (2024), DOI: 10.33048/daio. 2024.31.794 [Russian] [J. Appl. Ind. Math. 18 (4) 918–934 (2024), DOI: 10. 1134/S1990478924040239].
     
  10. Internetworking Technologies Handbook (Cisco Press, Indianapolis, 2000).
     
  11. B. Fortz and M. Thorup, Internet traffic engineering by optimizing OSPF weights, in Reaching the Promised Land of Communications, Proc. 20th Annu. Joint Conf. IEEE Computer and Communications Societies (Tel Aviv, Israel, Mar. 26–30, 2000), Vol. 2 (IEEE Comput. Soc., Washington, 2000), pp. 519–528, DOI: 10.1109/INFCOM.2000.832225.
     
  12. M. Ericsson, M. Resende, and P. Pardalos, A genetic algorithm for the weight setting problem in OSPF routing, J. Comb. Optim. 6, 299–333 (2002), DOI: 10.1023/A:1014852026591.
     
  13. B. Fortz and M. Thorup, Optimizing OSPF/IS-IS weights in a changing world, IEEE J. Sel. Areas Commun. 20, 756–767 (2002), DOI: 10.1109/JSAC. 2002.1003042.
     
  14. M. S. Kodialam and T. V. Lakshman, Network link weight setting: A machine learning based approach, in Proc. IEEE Conf. Computer Communications (London, May 2–5, 2022) (IEEE, Piscataway, 2022), pp. 2048–2057, DOI: 10.1109/INFOCOM48880.2022.9796922.
     
  15. M. Pióro, Á. Szentesi, J. Harmatos, A. Jüttner, P. Gajowniczek, and S. Kozdrowski, On open shortest path first related network optimisation problems, Perform. Eval. 48 (1–4), 201–223 (2002), DOI: 10.1016/ S0166-5316(02)00036-6.
     
  16. S. Balon, F. Skivée, and G. Leduc, How well do traffic engineering objective functions meet TE requirements?, in NETWORKING 2006. Networking Technologies, Services, Protocols; Performance of Computer and Communication Networks; Mobile and Wireless Communications Systems, Proc. 5th Int. IFIP-TC6 Networking Conf. (Coimbra, Portugal, May 15–19, 2006) (Springer, Heidelberg, 2006), pp. 75–86 (Lect. Notes Comput. Sci., Vol. 3976), DOI: 10.1007/11753810_7.
     
  17. F. Blanchy, L. Melon, and G. Leduc, Routing in a MPLS network featuring preemption mechanisms, in Proc. 10th Int. Conf. Telecommunications (Papeete, French Polynesia, Feb. 23 – Mar. 1, 2003), Vol. 1 (IEEE, Piscataway, 2003), pp. 253–260, DOI: 10.1109/ICTEL.2003.1191228.
     
  18. G. Athanasiou, K. Tsagkaris, P. Vlacheas, D. Karvounas, and P. Demestichas, Multi-objective traffic engineering for future networks, IEEE Commun. Lett. 16 (1), 101–103 (2012), DOI: 10.1109/LCOMM.2011.110711. 112071. 19. E.-S. M. El-Alfy, Flow-based path selection for Internet traffic engineering with NSGA-II, in Proc. 17th Int. Conf. Telecommunications (Doha, Qatar, Apr. 4–7, 2010) (IEEE, Piscataway, 2010), pp. 621–627, DOI: 10.1109/ICTEL. 2010.5478839.
     
  19. P. Sousa, P. Cortez, M. Rio, and M. Rocha, Traffic engineering approaches using multicriteria optimization techniques, in Wired/Wireless Internet Communications, Proc. 9th IFIP TC 6 Int. Conf. (Vilanova i la Geltrú, Spain, June 15–17, 2011) (Springer, Heidelberg, 2011), pp. 104–115 (Lect. Notes Comput. Sci., Vol. 6649), DOI: 10.1007/978-3-642-21560-5_9.
     
  20. V. Pereira, P. Sousa, and M. Rocha, A comparison of multi-objective optimization algorithms for weight setting problems in traffic engineering, Nat. Comput. 21, 507–522 (2022), DOI: 10.1007/s11047-020-09807-1.
     
  21. N. Wang, K. H. Ho, G. Pavlou, and M. Howarth, An overview of routing optimization for internet traffic engineering, IEEE Commun. Surv. Tutor. 10 (1), 36–56 (2008), DOI: 10.1109/COMST.2008.4483669.
     
  22. S. Kaneda, T. Uyematsu, N. Nagatsu, and K. Sato, Network design and cost optimization for label switched multilayer photonic IP networks, IEEE J. Sel. Areas Commun. 23 (8), 1612–1619 (2005), DOI: 10.1109/JSAC.2005. 851747.
     
  23. R. Zhang-Shen and N. McKeown, Designing a predictable Internet backbone network, in Proc. 3rd Workshop Hot Topics in Networks (HotNets-III) (San Diego, CA, Nov. 15–16, 2004) (ACM SIGCOMM, New York, 2004), URL: conferences.sigcomm.org/hotnets/2004/HotNets-III% 20Proceedings/zhang-shen.pdf (accessed: 10.10.2025).
     
  24. D. D. Clark, Designing an Internet (MIT Press, Cambridge, MA, 2018).
     
  25. K. Holmberg and D. Yuan, Optimization of internet protocol network design and routing, Networks 43 (1), 39–53 (2004), DOI: 10.1002/net.10102.
     
  26. M. Dehghani, V. Vahdat, M. Amiri, E. Rabiei, and S. Salehi, A multiobjective optimization model for a reliable generalized flow network design, Comput. Ind. Eng. 138, ID 106074 (2019), DOI: 10.1016/j.cie.2019.106074.
     
  27. H. Zhu, V. Gupta, S. S. Ahuja, Y. Tian, Y. Zhang, and X. Jin, Network planning with deep reinforcement learning, in Proc. ACM SIGCOMM 2021 Conf. (Delft, Netherlands, Aug. 23–28, 2021) (ACM, New York, 2021), pp. 258– 271, DOI: 10.1145/3452296.3472902.
     
  28. R. T. Wong, Telecommunications network design: Technology impacts and future directions, Networks 77 (2), 205–224 (2021), DOI: 10.1002/net.21997.
     
  29. A. D. Yuskov, I. N. Kulachenko, A. A. Melnikov, and Yu. A. Kochetov, Two-stage algorithm for bi-objective black-box traffic engineering, in Optimization and Applications, Rev. Sel. Pap. 14th Int. Conf. OPTIMA 2023 (Petrovac, Montenegro, Sept. 18–22, 2023) (Springer, Cham, 2023), pp. 110–125 (Lect. Notes Comput. Sci., Vol. 14395), DOI: 10.1007/978-3-031-47859-8_9.
     
  30. P. Hansen, N. Mladenović, R. Todosijević, and S. Hanafi, Variable neighborhood search: Basics and variants, EURO J. Comput. Optim. 5 (3), 423–454 (2016), DOI: 10.1007/s13675-016-0075-x.
     
  31. J. Forrest, T. Ralphs, S. Vigerske, [et al.], COIN-OR Branch-and-Cut solver (CERN; Zenodo, Genève, 2023), DOI: 10.5281/zenodo.10041724.
     
  32. C. Audet, J. Bigeon, D. Cartier, S. Le Digabel, and L. Salomon, Performance indicators in multiobjective optimization, Eur. J. Oper. Res. 292 (2), 397–422 (2021), DOI: 10.1016/j.ejor.2020.11.016.
     
  33. A. Konak, D. W. Coit, and A. E. Smith, Multi-objective optimization using genetic algorithms: A tutorial, Reliab. Eng. Syst. Saf. 91 (9), 992–1007 (2006), DOI: 10.1016/j.ress.2005.11.018.
     
  34. D. Hadka, MOEA framework: A free and open source Java framework for multiobjective optimization. Version 5.1 (2025), URL: moeaframework.org (accessed: 10.10.2025).
     
  35. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Trans. Evolut. Comput. 6 (2), 182–197 (2002), DOI: 10.1109/4235.996017.
     
  36. E. Zitzler, M. Laumanns, and L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm, Inst. Tech. Inform. Kommun. rep. 103 (ETH Zürich, Zürich, 2001), DOI: 10.3929/ethz-a-004284029.
     
  37. D. W. Corne, N. R. Jerram, J. D. Knowles, and M. J. Oates, PESA-II: Region-based selection in evolutionary multiobjective optimization, in Proc. 3rd Annu. Conf. Genetic and Evolutionary Computation (San Francisco, CA, July 7–11, 2001) (Morgan Kaufmann Publ., San Francisco, 2001), pp. 283–290.
     
  38. J. D. Knowles and D. W. Corne, Approximating the nondominated front using the Pareto archived evolution strategy, Evolut. Comput. 8 (2), 149–172 (2000), DOI: 10.1162/106365600568167.
     
  39. H. B. Mann and D. R. Whitney, On a test of whether one of two random variables is stochastically larger than the other, Ann. Math. Stat. 18 (1), 50–60 (1947), DOI: 10.1214/aoms/1177730491.
     
  40. F. Wilcoxon, Individual comparisons by ranking methods, Biom. Bull. 1 (6), 80–83 (1945).
     
  41. M. Lindauer, K. Eggensperger, M. Feurer, [et al.], SMAC3: A versatile Bayesian optimization package for hyperparameter optimization, J. Mach. Learn. Res. 23, ID 54 (2022).